Low-Voltage Single SPDT Analog Switch

DESCRIPTION

The DG9411 is a single-pole/double-throw monolithic CMOS analog switch designed for high performance switching of analog signals. Combining low power, high speed ($\mathrm{t}_{\mathrm{ON}}: 9 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{OFF}}$: 5 ns), low on-resistance ($\mathrm{r}_{\mathrm{DS}(o n)}: 7 \Omega$) and small physical size (SC70), the DG9411 is ideal for portable and battery powered applications requiring high performance and efficient use of board space.

The DG9411 is built on Vishay Siliconix's low voltage JI2 process. An epitaxial layer prevents latchup. Break-before make is guaranteed for DG9411.

Each switch conducts equally well in both directions when on, and blocks up to the power supply level when off.

FEATURES

- Low voltage operation (2.25 V to 5.5 V)
- Low on-resistance - $r_{\text {DS(on): }} 7 \Omega$
- Fast switching - t_{ON} : $9 \mathrm{~ns}, \mathrm{t}_{\mathrm{OFF}}: 5 \mathrm{~ns}$
- Low charge injection - $\mathrm{Q}_{\mathrm{INJ}}: 5 \mathrm{pC}$
- Low power consumption
- TTL/CMOS compatible
- 6-Pin SC70 package

BENEFITS

- Reduced power consumption
- Simple logic interface
- High accuracy
- Reduce board space

APPLICATIONS

- Cellular phones
- Communication systems
- Portable test equipment
- Battery operated systems
- Sample and hold circuits

RoHS* COMPLIANT

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE		
Logic	NC	NO
0	ON	OFF
1	OFF	ON

Logic "0" $\leq 0.8 \mathrm{~V}$
Logic "1" $\geq 2.4 \mathrm{~V}$

ORDERING INFORMATION		
Temp Range	Package	Part Number
-40 to $85^{\circ} \mathrm{C}$	SC70-6	DG9411DL-T1 DG9411DL-T1-E3

[^0]
Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS			
Parameter		Limit	Unit
Reference V+ to GND		- 0.3 to +6	V
IN, COM, NC, $\mathrm{NO}^{\text {a }}$		- 0.3 to (V++0.3)	
Continuous Current (Any Terminal)		± 50	mA
Peak Current (Pulsed at 1 ms ,	cle)	± 200	
Storage Temperature		-65 to 150	${ }^{\circ} \mathrm{C}$
Power Dissipation (Packages) ${ }^{\text {b }}$	6 -Pin SC70 ${ }^{\text {c }}$	250	mW

Notes:

a. Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC Board.
c. Derate $3.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.

SPECIFICATIONS $\mathrm{V}+=2.5 \mathrm{~V}$							
Parameter	Symbol	Test Conditions Unless Otherwise Specified$\begin{aligned} & \mathrm{V}_{+}=2.5 \mathrm{~V}, \pm 10 \% \\ & \mathrm{~V}_{\mathrm{IN}}=0.4 \text { or } 2.0 \mathrm{~V}^{\mathrm{e}} \end{aligned}$	Temp ${ }^{\text {a }}$	$\begin{gathered} \text { Limits } \\ -40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	Max ${ }^{\text {b }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {d }}$	$\begin{gathered} \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}} \\ \mathrm{~V}_{\mathrm{COM}} \end{gathered}$		Full	0		V+	V
Drain-Source On-Resistance	$r_{\text {DS(on) }}$	$\mathrm{V}+=2.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1.0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA}$	$\begin{aligned} & \hline \text { Room } \\ & \text { Fulld } \end{aligned}$		$\begin{aligned} & 26 \\ & 29 \end{aligned}$	$\begin{aligned} & 35 \\ & 40 \end{aligned}$	Ω
$\mathrm{r}_{\text {DS(on) }}$ Flatness ${ }^{\text {d }}$	$r_{\text {DS(on) }}$ Flatness	$\mathrm{V}+=2.5 \mathrm{~V}$	Room		10		
Switch Off Leakage Current ${ }^{\dagger}$	$\mathrm{I}_{\text {(off) }}$	$\mathrm{V}+=2.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0.5 \mathrm{~V} / 1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1.5 \mathrm{~V} / 0.5 \mathrm{~V}$	$\begin{aligned} & \text { Room } \\ & \text { Full } \end{aligned}$	$\begin{aligned} & -250 \\ & -3.0 \end{aligned}$		$\begin{aligned} & 250 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
	$I_{\text {(off) }}$		$\begin{aligned} & \text { Room } \\ & \text { Full }^{\text {d }} \end{aligned}$	$\begin{aligned} & -250 \\ & -3.0 \end{aligned}$		$\begin{aligned} & 250 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
Channel-On Leakage Current ${ }^{f}$	$I_{\text {(on) }}$	$\mathrm{V}+=2.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=0.5 \mathrm{~V} / 1.5 \mathrm{~V}$	$\begin{aligned} & \text { Room } \\ & \text { Full }^{\text {d }} \end{aligned}$	$\begin{aligned} & -250 \\ & -3.0 \end{aligned}$		$\begin{aligned} & 250 \\ & 3.0 \end{aligned}$	pA
Digital Control							
Input High Voltage	$\mathrm{V}_{\text {INH }}$		Full	2			V
Input Low Voltage	$\mathrm{V}_{\text {INL }}$		Full			0.4	
Input Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\text {in }}$		Full		3		pF
Input Current	$\mathrm{I}_{\mathrm{INL}}$ or $\mathrm{l}_{\mathrm{INH}}$	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+$	Full	-1		1	$\mu \mathrm{A}$
Dynamic Characteristics							
Turn-On Time	t_{O}	$\begin{gathered} \mathrm{V}_{\mathrm{D}} \text { or } \mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ \text { Figures } 1 \text { and } 2 \end{gathered}$	$\begin{aligned} & \text { Room } \\ & \text { Full }^{\text {d }} \end{aligned}$		16	$\begin{aligned} & 40 \\ & 45 \end{aligned}$	ns
Turn-Off Time	$t_{\text {OFF }}$		$\begin{gathered} \text { Room } \\ \text { Full } \end{gathered}$		7	$\begin{aligned} & 23 \\ & 28 \end{aligned}$	
Break-Before-Make Time	t_{d}		Room ${ }^{\text {d }}$	1	12		
Charge Injection ${ }^{\text {d }}$	$\mathrm{Q}_{\text {INJ }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega,$ Figure 3	Room		5	10	pC
Off-Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	Room		-73		dB
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$		Room		-70		
Source-Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\text {S(off) }}$	$\mathrm{V}_{\mathrm{IN}}=0$ or $\mathrm{V}_{+}, \mathrm{f}=1 \mathrm{MHz}$	Room		7		pF
Channel-On Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\text {D(on) }}$		Room		20		
Drain-to-Source Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{DS} \text { (off) }}$		Room		20		
Power Supply							
Power Supply Range	V+			2.25		2.75	V
Power Supply Current ${ }^{\text {d }}$	I+	$\mathrm{V}_{\mathrm{IN}}=0$ or V_{+}			0.01	1.0	$\mu \mathrm{A}$
Power Consumption	P_{C}					0.3	$\mu \mathrm{W}$

SPECIFICATIONS $\mathrm{V}+=3 \mathrm{~V}$							
Parameter	Symbol	Test Conditions Unless Otherwise Specified$\begin{aligned} \mathrm{V}+ & =3 \mathrm{~V}, \pm 10 \% \\ \mathrm{~V}_{\mathrm{IN}} & =0.4 \text { or } 2.0 \mathrm{~V}^{\mathrm{e}} \end{aligned}$	Temp ${ }^{\text {a }}$	$\begin{gathered} \text { Limits } \\ -40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	Max ${ }^{\text {b }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {d }}$	$\begin{gathered} \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}} \\ \mathrm{~V}_{\mathrm{COM}} \end{gathered}$		Full	0		V+	V
Drain-Source On-Resistance ${ }^{\text {d }}$	${ }^{\text {d }}$ S(on)	$\mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA}$	Room Full		$\begin{aligned} & \hline 15 \\ & 19 \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	Ω
$\mathrm{r}_{\text {DS(on) }}$ Flatness ${ }^{\text {d }}$	$r_{\text {DS(on) }}$ Flatness	$\mathrm{V}_{\mathrm{S}}=0$ to $\mathrm{V}+\mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA}$	Room		7.5		
Switch Off Leakage Current ${ }^{\dagger}$	$\mathrm{I}_{\text {(off) }}$	$\mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=3 \mathrm{~V} / 1 \mathrm{~V}$	Room Full	$\begin{aligned} & \hline-500 \\ & -4.0 \end{aligned}$		$\begin{gathered} 500 \\ 4.0 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
	$\mathrm{I}_{\mathrm{D} \text { (off) }}$		Room Full	$\begin{aligned} & \hline-500 \\ & -4.0 \end{aligned}$		$\begin{aligned} & 500 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
Channel-On Leakage Current ${ }^{\dagger}$	$I_{\text {don }}$	$\mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} / 3 \mathrm{~V}$	Room Full	$\begin{aligned} & \hline-500 \\ & -4.0 \end{aligned}$		$\begin{aligned} & 500 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
Digital Control							
Input High Voltage	$\mathrm{V}_{\text {INH }}$		Full	2			
Input Low Voltage	$\mathrm{V}_{\text {INL }}$		Full			0.8	
Input Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\text {in }}$		Full		3		pF
Input Current	$\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=0$ or V_{+}	Full	-1		1	$\mu \mathrm{A}$
Dynamic Characteristics							
Turn-On Time ${ }^{\text {d }}$	t_{ON}	$V_{D} \text { or } V_{S}=2.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ Figures1 and 2	Room Full		12	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	ns
Turn-Off Time ${ }^{\text {d }}$	$t_{\text {OFF }}$		Room Full		6	$\begin{gathered} \hline 8 \\ 10 \end{gathered}$	
Break-Before-Make Time ${ }^{\text {d }}$	t_{d}		Room	1	7		
Charge Injection ${ }^{\text {d }}$	$\mathrm{Q}_{\text {INJ }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega,$ Figure 3	Room		5	10	pC
Off-Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	Room		-73		dB
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$		Room		-70		
Source-Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\text {S(off) }}$	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+\mathrm{f}=1 \mathrm{MHz}$	Room		7		pF
Channel-On Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\text {D(on) }}$		Room		20		
Drain-to-Source Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{DS} \text { (off) }}$		Room		20		
Power Supply							
Power Supply Range	V+			2.7		3.3	V
Power Supply Current	I+	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+$			0.01	1.0	$\mu \mathrm{A}$
Power Consumption	P_{C}					0.4	$\mu \mathrm{W}$

Vishay Siliconix

SPECIFICATIONS $\mathrm{V}+=5 \mathrm{~V}$							
Parameter	Symbol	Test Conditions Unless Otherwise Specified$\begin{gathered} \mathrm{V}+=5 \mathrm{~V}, \pm 10 \% \\ \mathrm{~V}_{\mathrm{IN}}=0.8 \text { or } 2.4 \mathrm{~V}^{\mathrm{e}} \end{gathered}$	Temp ${ }^{\text {a }}$	$\begin{gathered} \text { Limits } \\ -40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	Max ${ }^{\text {b }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {d }}$	$\begin{gathered} \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}} \\ \mathrm{~V}_{\mathrm{COM}} \end{gathered}$		Full	0		V+	V
Drain-Source On-Resistance	${ }^{\text {d }}$ S(on)	$\mathrm{V}+=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA}$	Room Full		$\begin{gathered} \hline 7 \\ 10 \\ \hline \end{gathered}$	$\begin{aligned} & 12 \\ & 16 \end{aligned}$	Ω
$\mathrm{r}_{\text {DS(on) }}$ Flatness $^{\text {d }}$	${ }^{\mathrm{r}_{\mathrm{DS}}(o n)}$ Flatness	$\mathrm{V}+=2.5 \mathrm{~V}$	Room		2		
Switch Off Leakage Current	$\mathrm{I}_{\mathrm{S} \text { (off) }}$	$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V}$	Room Full	$\begin{array}{r} -1.0 \\ -4.0 \end{array}$		$\begin{aligned} & 1.0 \\ & 4.0 \end{aligned}$	nA
	$I_{\text {(off) }}$		Room Full	$\begin{aligned} & -1.0 \\ & -4.0 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 4.0 \end{aligned}$	
Channel-On Leakage Current	$I_{\text {(on) }}$	$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} / 4.5 \mathrm{~V}$	Room Full	$\begin{aligned} & -1.0 \\ & -3.0 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 4.5 \end{aligned}$	
Digital Control							
Input High Voltage	$\mathrm{V}_{\text {INH }}$		Full	2.4			V
Input Low Voltage	$\mathrm{V}_{\text {INL }}$		Full			0.8	
Input Capacitance	$\mathrm{C}_{\text {in }}$		Full		3		pF
Input Current	$\mathrm{I}_{\mathrm{INL}}$ or $\mathrm{I}_{\mathrm{INH}}$	$\mathrm{V}_{\text {IN }}=0$ or V_{+}	Full	-1		1	$\mu \mathrm{A}$
Dynamic Characteristics							
Turn-On Time ${ }^{\text {d }}$	t_{ON}	$V_{D} \text { or } V_{S}=3 V, R_{L}=300 \Omega, C_{L}=35 \mathrm{pF}$ Figure 1 and 2	Room Full		9	$\begin{aligned} & 11 \\ & 15 \end{aligned}$	ns
Turn-Off Time ${ }^{\text {d }}$	toff		Room Full		5	$\begin{aligned} & \hline 7 \\ & 9 \end{aligned}$	
Break-Before-Make Time ${ }^{\text {d }}$	t_{d}		Room	1	4		
Charge Injection ${ }^{\text {d }}$	$\mathrm{Q}_{\text {INJ }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega,$ Figure 3	Room		5	10	pC
Off-Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	Room		-73		dB
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$		Room		-70		
Source-Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\text {S(off) }}$	$\mathrm{V}_{\mathrm{IN}}=0$ or $\mathrm{V}+, \mathrm{f}=1 \mathrm{MHz}$	Room		7		pF
Channel-On Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{D} \text { (on) }}$		Room		20		
Drain-to-Source Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\text {DS(off) }}$		Room		20		
Power Supply							
Power Supply Range	V+			4.5		5.5	V
Power Supply Current	I+	$\mathrm{V}_{\text {IN }}=0$ or V_{+}			0.01	1.0	$\mu \mathrm{A}$
Power Consumption	P_{C}					0.6	$\mu \mathrm{W}$

Notes:
a. Room $=25^{\circ} \mathrm{C}$, Full = as determined by the operating suffix.
b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet.
c. Typical values are for design aid only, not guaranteed nor subject to production testing.
d. Guarantee by design, nor subjected to production test.
e. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.
f. Guaranteed by 5 V leakage testing, not production tested.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DG9411
Vishay Siliconix
TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

Vishay Siliconix
TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

Charge Injection vs. Analog Voltage

TEST CIRCUITS

Logic "1" = Switch On
Logic input waveforms inverted for switches that have the opposite logic sense.

Figure 1. Switching Time

Figure 2. Break-Before-Make Interval

IN depends on switch configuration: input polarity determined by sense of switch.

Figure 3. Charge Injection

TEST CIRCUITS

Figure 4. Off-Isolation

Figure 5. Channel Off/On Capacitance

[^1]SC-70: 6-LEADS

Dim	MILLIMETERS			INCHES			
	Min	Nom	Max	Min	Nom	Max	
A	0.90	-	1.10	0.035	-	0.043	
$\mathbf{A}_{\mathbf{1}}$	-	-	0.10	-	-	0.004	
$\mathbf{A}_{\mathbf{2}}$	0.80	-	1.00	0.031	-	0.039	
b	0.15	-	0.30	0.006	-	0.012	
C	0.10	-	0.25	0.004	-	0.010	
D	1.80	2.00	2.20	0.071	0.079	0.087	
E	1.80	2.10	2.40	0.071	0.083	0.094	
$\mathbf{E}_{\mathbf{1}}$	1.15	1.25	1.35	0.045	0.049	0.053	
e	0.65 BSC						
$\mathbf{e}_{\mathbf{1}}$	1.20	1.30	1.40	0.026 BSC			
L	0.10	0.20	0.30	0.004	0.051	0.055	
$\mathbf{\alpha}$	7° Nom						
ECN: S-03946-Rev. B, 09-Jul-01 DWG: 5550	0.012						

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analog Switch ICs category:
Click to view products by Vishay manufacturer:
Other Similar products are found below :
PI5A100QEX DG9233EDY-GE3 NLAS4684FCTCG NLAS5223BLMNR2G NLV74HC4066ADR2G MC74HC4067ADTG NLX2G66DMUTCG NS5A4684SMNTAG 732480R 733995E 425541DB 425528R 099044FB FSA221UMX MAX4888ETI+T NLAS5123MNR2G NLAS7222AMTR2G MAX14807ECB+ MAX4968ECM+ PI5A4157CEX NLV14066BDG LC78615E-01US-H PI5A4599BCEX PI5A3157BZUEX NLAS4717EPFCT1G PI5A3167CCEX MAX4744ELB+T MAX4802ACXZ+ SLAS3158MNR2G PI5A392AQE MAX4744HELB+T PI5A4157ZUEX MC74HC4067ADTR2G PI5A4158ZAEX PI5A3166TAEX MAX4901EBL+T MAX14510EEVB+T PI3A3899ZTEX MAX4996ETG+T MAX4889AETO+T MAX14508EEVB+T MAX4701ETE+T MAX4996LETG+T NLX2G66FCTAG TMUX136RSER HV2605FG-G DG302BDJ-E3 ADG741BKSZ-REEL ADG742BKSZ5-REEL7 PI5A100WE

[^0]: * Pb containing terminations are not RoHS compliant, exemptions may apply.

[^1]: Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?71347.

