Low Voltage, Dual Supply, Low Ron, Quad SPST Analog Switches
 DESCRIPTION
 FEATURES

The DG9424, DG9425, DG9426 are low voltage precision monolithic quad single-pole-single-throw analog switches.
Using BiCMOS wafer fabrication technology allows the DG9424, DG9425, DG9426 to operate on single and dual supplies. Single supply voltage ranges from 3 V to 12 V while dual supply operation is recommended with $\pm 3 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$.
Combining high speed ($t_{0 N}$: 42 ns), flat $R_{D S(o n)}$ over the analog signal range (Ω), minimal insertion lose (-3 dB at 190 MHz), and excellent crosstalk and off-isolation performance, the DG9424, DG9425, DG9426 are ideally suited for audio and video signal switching.
The DG9424 and DG9425 respond to opposite control logic as shown in the truth table. The DG9426 has two normally open and two normally closed switches.

- 2.7 V thru 12 V single supply or ± 3 thru ± 6 dual supply
- On-resistance - $\mathrm{R}_{\mathrm{DS}(\text { on) }}$: 1.7Ω
- Fast switching - ton: 42 ns
- toff: 28 ns
- TTL, CMOS compatible
- Low leakage: 0.2 nA
- 2000 V ESD protection

BENEFITS

- Widest dynamic range
- Low signal errors and distortion
- Break-before-make switching action
- Simple interfacing

APPLICATIONS

- Automatic test equipment
- Data acquisition systems
- Communication systems
- ADC systems
- xDSL and PBX / PABX
- Audio signal routing

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE		
LOGIC	DG9424	DG9425
0	OFF	ON
1	ON	OFF

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE		
LOGIC	$\mathbf{S W}_{\mathbf{1}}, \mathbf{S W}_{\mathbf{4}}$	$\mathbf{S W}_{\mathbf{2}}, \mathbf{S W}_{\mathbf{3}}$
0	ON	OFF
1	OFF	ON

ORDERING INFORMATION				
TEMP. RANGE	PACKAGE	PART NUMBER		
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$16-\mathrm{Pin}$ TSSOP	DG9424DQ-T1-E3		
		DG9425DQ-T1-E3		

ABSOLUTE MAXIMUM RATINGS

PARAMETER		LIMIT	UNIT
V+ to V-		-0.3 to +13	V
GND to V-		7	
V_{L}		(GND - 0.3) to (V+)+0.3	
IN, COM, NC, $\mathrm{NO}^{\text {a }}$		(V-) - 0.3 to (V+) + 0.3	
Continuous Current (NO, NC, COM Pins)		100	mA
Peak Current, S or D (Pulsed 1 ms, 10 \% Duty Cycle)		200	
Storage Temperature		-65 to +150	${ }^{\circ} \mathrm{C}$
Power Dissipation (Package) ${ }^{\text {b }}$	16-Pin TSSOP ${ }^{\text {c }}$	450	mW
Thermal Resistance ${ }^{\text {b }}$		178	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Notes

a. Signals on NC, NO, COM or IN exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC board.
c. Derate $7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

SPECIFICATIONS a Single Supply 12 V							
PARAMETER	SYMBOL	$\begin{aligned} & \text { TEST CONDITIONS UNLESS } \\ & \text { OTHERWISE SPECIFIED } \\ & \mathrm{V}+\mathrm{+}=12 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}_{\mathrm{V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.4 \mathrm{~V}, 0.8 \mathrm{~V} \mathrm{f}} . \end{aligned}$	TEMP. ${ }^{\text {b }}$	LIMITS $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			UNIT
				MIN. ${ }^{\text {d }}$	TYP. ${ }^{\text {c }}$	MAX. ${ }^{\text {d }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full	0	-	12	V
On-Resistance	RON	$\begin{gathered} \mathrm{V}+=10.8 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{COM}}=2 \mathrm{~V} / 9 \mathrm{~V} \end{gathered}$	Room	-	1.8	3	Ω
			Full	-	-	4	
Digital Control							
Input Current	$\mathrm{I}_{\text {INL }}$ or $\mathrm{l}_{\text {INH }}$		Full	-1	0.01	1	$\mu \mathrm{A}$
Dynamic Characteristics							
Turn-On Time ${ }^{\text {e }}$	t_{ON}	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=5 \mathrm{~V}$, see fig. 2	Room	-	42	57	ns
			Full	-	-	65	
Turn-Off Time ${ }^{\text {e }}$	toff		Room	-	28	42	
			Full	-	-	44	
Break-Before-Make Time Delay e	$t_{\text {D }}$	$\begin{gathered} \text { DG9426 only, } V_{\text {NO }}, V_{N C}=5 \mathrm{~V} \\ R_{L}=300 \Omega, C_{L}=35 \mathrm{pF} \end{gathered}$	Room	2	-	-	
Charge Injection ${ }^{\text {e }}$	$\mathrm{Q}_{\text {INJ }}$	$\mathrm{V}_{\mathrm{g}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{g}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$	Room	-	38	-	pC
Off-Isolation ${ }^{\text {e }}$	OIRR	$\begin{aligned} \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	Room	-	-56	-	dB
Channel-to-Channel Crosstalk ${ }^{\text {e }}$	$\mathrm{X}_{\text {TALK }}$		Room	-	-77	-	
NO, NC Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\mathrm{NO} \text { (off) }}$	$\mathrm{f}=1 \mathrm{MHz}$	Room	-	49	-	pF
	$\mathrm{C}_{\mathrm{NC} \text { (off) }}$						
COM Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {com(off) }}$		Room	-	37	-	
Channel On Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {com(on) }}$		Room	-	89	-	
Power Supplies							
Positive Supply Current	$1+$	$\mathrm{V}_{\mathrm{IN}}=0$ or V_{L}	Room	-	0.02	1	$\mu \mathrm{A}$
			Full	-	-	5	
Negative Supply Current	I-		Room	-1	-0.002	-	
			Full	-5	-	-	
Logic Supply Current	I_{L}		Room	-	0.002	1	
			Full	-	-	5	
Ground Current	$\mathrm{IGND}^{\text {a }}$		Room	-1	-0.002	-	
			Full	-5	-	-	

SPECIFICATIONS ${ }^{\text {a }}$ Dual Supply $\pm 5 \mathrm{~V}$							
PARAMETER	SYMBOL	TEST CONDITIONS UNLESS OTHERWISE SPECIFIED $\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=5 \mathrm{~V}$ $\mathrm{V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V}$	TEMP. ${ }^{\text {b }}$	$\begin{gathered} \text { LIMITS } \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$			UNIT
				MIN. ${ }^{\text {d }}$	TYP. ${ }^{\text {c }}$	MAX. ${ }^{\text {d }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full	-5		5	V
On-Resistance	Ron	$\begin{gathered} \mathrm{V}_{+}=4.5 \mathrm{~V}, \mathrm{~V}-=-4.5 \mathrm{~V} \\ \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{COM}}= \pm 3.5 \mathrm{~V} \end{gathered}$	Room	-	2	3.3	Ω
			Full	-	-	4.3	
Switch Off Leakage Current	$\mathrm{I}_{\mathrm{NO} \text { (fff) }}$	$\begin{gathered} \mathrm{V}_{+}=5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{COM}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}= \pm 4.5 \mathrm{~V} \end{gathered}$	Room	-1	-	1	nA
	$\mathrm{l}_{\mathrm{NC} \text { (off) }}$		Full	-10	-	10	
			Room	-1	-	1	
	Com(ofi)		Full	-10	-	10	
Channel On Leakage Current	$\mathrm{I}_{\text {com(on) }}$	$\begin{gathered} \mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}-=-5.5 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}= \pm 4.5 \mathrm{~V} \end{gathered}$	Room	-1	-	1	
			Full	-10	-	10	
Digital Control							
Input Current ${ }^{\text {a }}$	$\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$		Full	-1	0.05	1	$\mu \mathrm{A}$
Dynamic Characteristics							
Turn-On Time ${ }^{\text {e }}$	t_{on}	$\begin{gathered} R_{L}=300 \Omega, C_{L}=35 \mathrm{pF} \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}= \pm 3.5 \mathrm{~V} \text {, see fig. } 2 \end{gathered}$	Room	-	48	67	ns
			Full	-	-	81	
Turn-Off Time ${ }^{\text {e }}$	toff		Room	-	34	57	
			Full	-	-	67	
Break-Before-Make Time Delay ${ }^{\text {e }}$	$t_{\text {D }}$	$\begin{gathered} \text { DG9426 only, } \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=3.5 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$	Room	2	-	-	
Charge Injection ${ }^{\text {e }}$	QinJ	$\mathrm{V}_{\mathrm{g}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{g}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$	Room	-	112	-	pC
Off Isolation ${ }^{\text {e }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	Room	-	-56	-	dB
Channel-to-Channel Crosstalk ${ }^{\text {e }}$	$\mathrm{X}_{\text {TALK }}$		Room	-	-82	-	
Source Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\mathrm{NO} \text { (off) }}$ $\mathrm{C}_{\mathrm{NC} \text { (off) }}$	$\mathrm{f}=1 \mathrm{MHz}$	Room	-	38	-	pF
Drain Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {com(off) }}$		Room	-	38	-	
Channel On Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {com(on) }}$		Room	-	89	-	
Power Supplies							
Positive Supply Current ${ }^{\text {e }}$	$1+$	$\mathrm{V}_{\mathrm{IN}}=0$ or V_{L}	Room	-	0.03	1	$\mu \mathrm{A}$
			Full	-	-	5	
Negative Supply Current ${ }^{\text {e }}$	I-		Room	-1	-0.002	-	
			Full	-5	-	-	
Logic Supply Current ${ }^{\text {e }}$	I		Room	-	0.002	1	
			Full	-	-	5	
Ground Current ${ }^{\text {e }}$	$\mathrm{I}_{\mathrm{GND}}$		Room	-1	-0.002	-	
			Full	-5	-	-	

DG9424, DG9425, DG9426

SPECIFICATIONS ${ }^{\text {a }}$ Single Supply 5 V							
PARAMETER	SYMBOL	TEST CONDITIONS UNLESS OTHERWISE SPECIFIED$\begin{gathered} \mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V} \end{gathered}$	TEMP. ${ }^{\text {b }}$	LIMITS $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			UNIT
				MIN. ${ }^{\text {d }}$	TYP. ${ }^{\text {c }}$	MAX. ${ }^{\text {d }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full	-	-	5	V
On-Resistance ${ }^{\text {e }}$	Ron	$\begin{gathered} \mathrm{V}+=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{NO}}, I_{\mathrm{NC}}=50 \mathrm{~mA}, \\ \mathrm{VCOM}=1 \mathrm{~V}, 3.5 \mathrm{~V} \end{gathered}$	Room	-	3.4	4.8	Ω
			Full	-	-	5.8	
Dynamic Characteristics							
Turn-On Time ${ }^{\text {e }}$	t_{ON}	$R_{L}=300 \Omega, C_{L}=35 p F$ $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=3.5 \mathrm{~V}$, see fig. 2	Room	-	71	86	ns
			Hot	-	-	106	
Turn-Off Time ${ }^{\text {e }}$	$\mathrm{t}_{\text {OFF }}$		Room	-	37	51	
			Hot	-	-	56	
Break-Before-Make Time Delay ${ }^{\text {e }}$	$t_{\text {D }}$	$\begin{gathered} \text { DG9426 only, } \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=3.5 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$	Room	5	-	-	
Charge Injection ${ }^{\text {e }}$	$Q_{\text {INJ }}$	$\mathrm{V}_{\mathrm{g}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{g}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$	Room	-	10	-	pC
Power Supplies							
Positive Supply Current ${ }^{\text {e }}$	I+	$\mathrm{V}_{\mathrm{IN}}=0$ or V_{L}	Room	-	0.02	1	$\mu \mathrm{A}$
			Hot	-	-	5	
Negative Supply Current ${ }^{\text {e }}$	I-		Room	-1	-0.002	-	
			Hot	-5	-	-	
Logic Supply Current ${ }^{\text {e }}$	I_{L}		Room	-	0.002	1	
			Hot	-	-	5	
Ground Current ${ }^{\text {e }}$	$I_{\text {GND }}$		Room	-1	-0.002	-	
			Hot	-5	-	-	

SPECIFICATIONS ${ }^{\text {a }}$ Single Supply 3 V							
PARAMETER	SYMBOL	$\begin{gathered} \text { TEST CONDITIONS UNLESS } \\ \text { OTHERWISE SPECIFIED } \\ \mathrm{V}+=3 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{L}}=3 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.4 \mathrm{~V}, 0.4 \mathrm{~V} \end{gathered}$	TEMP. ${ }^{\text {b }}$	LIMITS $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			UNIT
				MIN. ${ }^{\text {d }}$	TYP. ${ }^{\text {c }}$	MAX. ${ }^{\text {d }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full	0	-	3	V
On-Resistance	R_{ON}	$\begin{gathered} \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{COM}}=0.5 \mathrm{~V}, 2.2 \mathrm{~V} \end{gathered}$	Room	-	8	13.8	Ω
			Full	-	-	15.1	
Switch Off Leakage Current ${ }^{\text {a }}$	$\mathrm{I}_{\mathrm{NO} \text { (off) }}$	$\begin{gathered} \mathrm{V}_{+}=3.3 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{COM}}=0.3 \mathrm{~V}, 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=3,0.3 \mathrm{~V} \end{gathered}$	Room	-1	-	1	nA
	$\mathrm{I}_{\mathrm{NC} \text { (off) }}$		Full	-10	-	10	
			Room	-1	-	1	
	M(off)		Full	-10	-	10	
Channel On Leakage Current ${ }^{\text {a }}$	$\mathrm{I}_{\text {com(on) }}$	$\begin{gathered} \mathrm{V}_{+}=3.3 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=0.3 \mathrm{~V}, 3 \mathrm{~V} \end{gathered}$	Room	-1	-	1	
			Full	-10	-	10	
Digital Control ${ }^{\text {e }}$							
Input Current	$\mathrm{I}_{\text {INL }}$ or $\mathrm{l}_{\text {INH }}$		Full	-1	0.005	1	$\mu \mathrm{A}$
Dynamic Characteristics							
Turn-On Time	t_{on}	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}$, see fig. 2	Room	-	140	163	ns
			Full	-	-	193	
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$		Room	-	65	80	
			Full	-	-	89	
Break-Before-Make Time Delay	$t_{\text {D }}$	$\begin{gathered} \text { DG9426 only, } \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=1.5 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$	Room	5			
Charge Injection ${ }^{\text {e }}$	QinJ	$\mathrm{V}_{\mathrm{g}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{g}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$	Room	-	15	-	pC
Off Isolation ${ }^{\text {e }}$	OIRR	$\begin{gathered} R_{L}=50 \Omega, C_{L}=5 \mathrm{pF} \\ f=1 \mathrm{MHz} \end{gathered}$	Room	-	-56	-	dB
Channel-to-Channel Crosstalk ${ }^{\text {e }}$	$\mathrm{X}_{\text {TALK }}$		Room	-	-80	-	
Source Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\mathrm{NO} \text { (off) }}$	$\mathrm{f}=1 \mathrm{MHz}$	Room	-	53	-	pF
	$\mathrm{C}_{\mathrm{NC} \text { (off) }}$		Room	-		-	
Drain Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {COM(off) }}$		Room	-	42	-	
Channel On Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {com(on) }}$		Room	-	92	-	

Notes

a. Leakage parameters are guaranteed by worst case test conditions and not subject to production test.
b. Room $=25^{\circ} \mathrm{C}$, Full = As determined by the operating temperature suffix.
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet.
e. Guaranteed by design, not subject to production test.
f. $\mathrm{V}_{\mathrm{IN}}=$ Input voltage to perform proper function.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

$R_{\text {ON }}$ vs. $V_{\text {COM }}$ and Supply Voltage

RoN vs. Analog Voltage and Temperature

Leakage Current vs. Analog Voltage

RON $_{\text {ON }}$ vs. Analog Voltage and Temperature

Supply Current vs. Temperature

Switching Current vs. Input Switching Frequency

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Switching Time vs. Temperature and Single Supply Voltage

Leakage Current vs. Temperature

Switching Time vs. Temperature and Dual Supply Voltage

Switching Threshold vs. Supply Voltage

Insertion Loss, Off Isolation and Crosstalk vs. Frequency

SCHEMATIC DIAGRAM (typical channel)

Fig. 1

TEST CIRCUITS

C_{L} (includes fixture and stray capacitance)
$V_{\text {OUT }}=V_{\text {IN }} \frac{R_{L}}{R_{L}+r_{O N}}$

Switch

Note: Logic input waveform is inverted for switches that have the opposite logic sense control

Fig. 2 - Switching Time

Fig. 3 - Break-Before-Make (DG9426)

TEST CIRCUITS

IN ${ }_{\mathrm{X}}$ dependent on switch configuration Input polarity determined by sense of switch.

Fig. 4 - Charge Injection

Fig. 5 - Crosstalk

Fig. 6 - Off-Isolation

Fig. 7 - Source / Drain Capacitances

[^0]TSSOP: 16-LEAD

Symbols	DIMENSIONS IN MILLIMETERS		
	Min	Nom	Max
A	-	1.10	1.20
A1	0.05	0.10	0.15
A2	-	1.00	1.05
B	0.22	0.28	0.38
C	-	0.127	-
D	4.90	5.00	5.10
E	6.10	6.40	6.70
E1	4.30	4.40	4.50
e	-	0.65	-
L	0.50	0.60	0.70
L1	0.90	1.00	1.10
y	-	-	0.10
11	0°	3°	6°
ECN: S-61920-Rev. D, 23-Oct-06			
DWG: 5624			

www.vishay.com

RECOMMENDED MINIMUM PAD FOR TSSOP-16

Recommended Minimum Pads
Dimensions in inches (mm)

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Vishay manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLX2G66DMUTCG 425541DB 425528R 099044FB NLAS5123MNR2G PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQE PI5A4157ZUEX PI5A3166TAEX FSA634UCX TC4066BP(N,F) DG302BDJ-E3 PI5A100QEX HV2605FG-G HV2301FG-G RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 ADG452BRZ-REEL7 MAX4066ESD+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G TS3A4751PWR NLAST4599DFT2G NLAST4599DTT1G DG300BDJ-E3 DG2503DB-T2-GE1 TC4W53FU(TE12L,F) 74HC2G66DC. 125 ADG619BRMZ-REEL ADG1611BRUZ-REEL7 DG2535EDQ-T1-GE3 LTC201ACN\#PBF 74LV4066DB,118 ISL43410IUZ FSA2275AUMX DIO1500WL12 ADG742BKSZ-REEL7

[^0]: Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg? 71807.

