DTO25

Surface Mounted Power Resistor Thick Film Technology

DESIGN SUPPORT TOOLS AVAILABLE

FEATURES

- AEC-Q200 qualified
- Surface mounted resistor - TO-252 (DPAK) style package
- Wide resistance range: 0.016Ω to $700 \mathrm{k} \Omega$
- Non inductive
- Resistor isolated from metal tab
- Solder reflow secure at $270^{\circ} \mathrm{C} / 10 \mathrm{~s}, \mathrm{MSL}=1$
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

DIMENSIONS in millimeters

Footprint recommendation for solderable contact area:

Notes

- For the assembly, we recommend the lead (Pb)-free thermal profile as per J-STD-020C
- Power dissipation is 3.2 W at an ambient temperature of $25^{\circ} \mathrm{C}$ when mounted on a double sided copper board using FR4 HTG, $70 \mu \mathrm{~m}$ of copper, $39 \mathrm{~mm} \times 30 \mathrm{~mm} \times 1.6 \mathrm{~mm}$, with thermal vias
- For other information about dissipation, see the Application Note 52027: "Thermal Management on SMD Thick Film Resistors (D2TO20, D2TO35, DTO25)"

STANDARD ELECTRICAL SPECIFICATIONS							
MODEL	SIZE	RESISTANCE RANGE Ω	RATED POWER $\boldsymbol{P}_{\mathbf{2 5} 5}{ }^{\circ} \mathrm{C}$	LIMITING ELEMENT VOLTAGE $\boldsymbol{U}_{\mathbf{L}}$ \mathbf{v}	TOLERANCE $\mathbf{\pm} \%$	TEMPERATURE COEFFICIENT $\mathbf{m p p m} /{ }^{\circ} \mathbf{C}$	CRITICAL RESISTANCE Ω
DTO25	TO-252 (DPAK)	0.016 to 700 K	25	500	$1,2,5,10$	150	10 K

MECHANICAL SPECIFICATIONS	
Mechanical Protection	Molded
Resistive Element	Thick film
Substrate	Alumina
Connections	Tinned copper, Ni under layer
Weight	2 g max.

ENVIRONMENTAL SPECIFICATIONS

Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Climatic Category	$55 / 150 / 56$
	IEC $60695-11-5$
Flammability	2 applications 30 s
	separated by 60 s

ELECTRICAL SPECIFICATIONS

Tolerances	$\begin{gathered} \text { From } 0.016 \Omega \text { to } 0.047 \Omega \text { : } \\ \pm 5 \% \text { and } \pm 10 \% \\ >0.047 \Omega \text { to } 0.1 \Omega: \\ \pm 2 \% \text { to } \pm 10 \% \\ \geq 0.11 \Omega: \pm 1 \% \text { to } \pm 10 \% \end{gathered}$
Power Rating and Thermal Resistance	25 W at $+25^{\circ} \mathrm{C}$ case temperature $\mathrm{R}_{\mathrm{TH}(\mathrm{j}-\mathrm{c})}: 5^{\circ} \mathrm{C} / \mathrm{W}$
Temperature Coefficient	See Special Feature table $\pm 150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Dielectric Strength	$1500 \mathrm{~V}_{\mathrm{RMS}}-1$ min - 15 mA max. (between terminals and board)
Insulation Resistance	$\geq 10^{4} \mathrm{M} \Omega$
Inductance	$\leq 0.1 \mu \mathrm{H}$

DTO25
Vishay Sfernice

$\left\lvert\,$| DIMENSIONS | |
| :--- | :--- | :--- | :---: |
| Standard Package | | | SPECIAL FEATURES | ≥ 0.016 | ≥ 0.1 | ≥ 0.5 |
| :--- | :---: | :---: | :---: |
| Resistance Values | $\pm 900 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | $\pm 350 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ | $\pm 150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |
| Requirement Temperature Coefficient (TCR)
 $\left(-55{ }^{\circ} \mathrm{C}+150^{\circ} \mathrm{C}\right)$ IEC $60115-1$ | | | |\right.

PERFORMANCE		
TESTS	CONDITIONS	REQUIREMENTS
Momentary Overload	$\begin{gathered} \hline \text { IEC } 60115-1 \S 4.13 \\ 1.6 \operatorname{Pr} 5 \mathrm{~s} \\ \text { US }<1.5 \mathrm{UL} \\ \hline \end{gathered}$	$\pm(0.25 \%+0.005 \Omega)$
Load Life	$\begin{gathered} \text { IEC } 60115-1 \\ 1000 \mathrm{~h}, 90 / 30 \mathrm{Pr} \text { at }+25^{\circ} \mathrm{C} \end{gathered}$	$\pm(1 \%+0.005 \Omega)$
High Temperature Exposure	AEC-Q200 REV D conditions: MIL-STD-202 method 108 $1000 \mathrm{~h},+175^{\circ} \mathrm{C}$, unpowered	$\pm(1 \%+0.005 \Omega)$
Temperature Cycling	AEC-Q200 REV D conditions: pre-conditioning 3 reflows according JESTD020D JESD22 method JA-104 1000 cycles, $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ dwell time 15 min	$\pm(0.5 \%+0.005 \Omega)$
Biased Humidity	AEC-Q200 REV D conditions: MIL-STD-202 method 103 $1000 \mathrm{~h}, 85^{\circ} \mathrm{C}, 85$ \% RH	$\pm(0.5 \%+0.005 \Omega)$
Operational Life	AEC-Q200 REV D conditions: pre-conditioning 3 reflows according JESTDO20D MIL-STD-202 method 108 $1000 \mathrm{~h}, 90 / 30$, powered, $+125^{\circ} \mathrm{C}$	$\pm(1 \%+0.005 \Omega)$
ESD Human Body Model	AEC-Q200 REV D conditions: AEC-Q200-002 $25 \mathrm{kV}_{\text {AD }}$	$\pm(0.5 \%+0.005 \Omega)$
Vibration	AEC-Q200 REV D conditions: MIL-STD-202 method 204 20 g 's for $20 \mathrm{~min}, 12$ cycles test from 10 Hz to 2000 Hz	$\pm(0.5 \%+0.005 \Omega)$
Mechanical Shock	$\begin{gathered} \text { AEC-Q200 REV D conditions: } \\ \text { MIL-STD-202 method } 213 \\ 100 \mathrm{~g} \text { 's, } 6 \mathrm{~ms}, 3.75 \mathrm{~m} / \mathrm{s} \\ 3 \text { shocks } / \text { direction } \end{gathered}$	$\pm(0.5 \%+0.005 \Omega)$
Board Flex	AEC-Q200 REV D conditions: AEC-Q200-005 bending $2 \mathrm{~mm}, 60 \mathrm{~s}$	$\pm(0.25 \%+0.01 \Omega)$
Terminal Strength	AEC-Q200 REV D conditions: AEC-Q200-006 $1.8 \mathrm{kgf}, 60 \mathrm{~s}$	$\pm(0.25 \%+0.01 \Omega)$

ASSEMBLY SPECIFICATIONS		
For the assembly on board, we recommend the lead (Pb)-free thermal profile as per J-STD-020C		
TESTS	CONDITIONS	REQUIREMENTS
Resistance to Soldering Heat	AEC-Q200 REV D MIL-STD-202 method 210 Solder Bath method: $270^{\circ} \mathrm{C} / 10 \mathrm{~s}$	$\pm(0.5 \%+0.005 \Omega)$
Moisture Sensitivity Level (MSL)	IPC / JEDEC ${ }^{\circledR}$ J-STD-020C $85^{\circ} \mathrm{C} / 85 \% \mathrm{RH} / 168 \mathrm{~h}$	Level: 1 + pass requirements of TCR Overload and Dielectic Strength after MSL

POWER RATING

The temperature of the case should be maintained within the limits specified.

CHOICE OF THE BOARD

The user must choose the board according to the working conditions of the component (power, room temperature). Maximum working temperature must not exceed $150^{\circ} \mathrm{C}$. The dissipated power is simply calculated by the following ratio:

$$
\begin{equation*}
P=\frac{\Delta T}{R_{T H(j-c)}+R_{T H}(c-h)+R_{T H}(h-a)} \tag{1}
\end{equation*}
$$

P: \quad Expressed in W
$\Delta \mathrm{T}$: Difference between maximum working temperature and room temperature
$R_{T H}(j-c)$: Thermal resistance value measured between resistive layer and outer side of the resistor. It is the thermal resistance of the component: $5^{\circ} \mathrm{C} / \mathrm{W}$.
$\mathrm{R}_{\mathrm{TH}(\mathrm{c}-\mathrm{h})}$: Thermal resistance value measured between outer side of the resistor and upper side of the board. This is the thermal resistance of the solder layer.
$R_{T H(h-a)}$: Thermal resistance of the board.

Example:

$\mathrm{R}_{\text {TH }(\mathrm{c}-\mathrm{h})}+\mathrm{R}_{\mathrm{TH}(\mathrm{h}-\mathrm{a})}$ for DTO25 power rating 3 W at ambient temperature $+25^{\circ} \mathrm{C}$.
Thermal resistance $\mathrm{R}_{\mathrm{TH}(\mathrm{j}}$ - c): $: 5^{\circ} \mathrm{C} / \mathrm{W}$
Considering equation ${ }^{(1)}$ we have:
$\Delta \mathrm{T}=150^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}=125^{\circ} \mathrm{C}$
$R_{\text {TH }(j-c)}+R_{T H(c-h)}+R_{T H}(\mathrm{~h}-\mathrm{a})=\Delta \mathrm{T} / \mathrm{P}=125 / 3=41.7^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {TH }(\mathrm{c}-\mathrm{h})}+\mathrm{R}_{\text {TH }}(\mathrm{h}-\mathrm{a})=41.7^{\circ} \mathrm{C} / \mathrm{W}-5^{\circ} \mathrm{C} / \mathrm{W}=36.7^{\circ} \mathrm{C} / \mathrm{W}$

ACCIDENTAL OVERLOAD

In any case the applied voltage must be lower than the maximum overload voltage of $U_{s}=750 \mathrm{~V}$. The values indicated on the graph below are applicable to resistors onto a board.

ENERGY CURVE at $25^{\circ} \mathrm{C}$

POWER CURVE at $25^{\circ} \mathrm{C}$

Single Pulse:
These informations are for a single pulse on a cold resistor at $25^{\circ} \mathrm{C}$ (not already used for a dissipation) and for pulses
of $\quad 100 \mathrm{~ms}$ maximum duration.
The formula used to calculate E is:

$$
E=P \times t=\frac{U^{2}}{R} \times t
$$

with:
$E(J)$: Pulse energy
$P(\mathrm{~W})$: Pulse power
$t(\mathrm{~s})$: Pulse duration
$U(\mathrm{~V})$: Pulse voltage
$R(\Omega)$: Resistor
The energy calculated must be less than that allowed by the graph.

Repetitive or Superimposed Pulses:
The following formula is used to calculate the "equivalent" energy of a repetitive pulse or the "equivalent energy" of a pulse on a resistor that is already dissipating power.

$$
E_{\mathrm{c}}=E \times\left(1+\frac{P_{\mathrm{a}}}{P_{\mathrm{r}}}\right)
$$

with:
$E_{c}(\mathrm{~J})$: Equivalent pulse energy
$E(J)$: Known pulse energy
P_{r} : Resistor power rating
P_{a} : Mean power being dissipated
The energy calculated must be less than that allowed by the graph and the average power dissipated $\left(P_{\mathrm{a}}\right)$ must not exceed the continuous power of resistor.

IMPEDANCE CURVE 10Ω to $1 \mathrm{k} \Omega$ from 100 kHz to 300 MHz

PACKAGING

- Tube: max. 50 units per tube
- Reel: max. 500 units per reel

MARKING

Model, style, resistance value (in Ω), tolerance (in \%), manufacturing date, Vishay Sfernice trademark.

ORDERING INFORMATION						
DTO	025	C	$100 \mathrm{k} \Omega$	± 1 \%	XXX	e3
MODEL	STYLE	CONNECTIONS	RESISTANCE VALUE	TOLERANCE	CUSTOM DESIGN	LEAD (Pb)-FREE
				$\begin{aligned} \mathrm{F} & = \pm 1 \% \\ \mathrm{G} & = \pm 2 \% \\ \mathrm{~J} & = \pm 5 \% \\ \mathrm{~K} & = \pm 10 \% \end{aligned}$	Optional on request: shape, etc	

SAP PART NUMBERING GUIDELINES

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Thick Film Resistors - SMD category:
Click to view products by Vishay manufacturer:

Other Similar products are found below :
CR-05FL7--19K6 CR-05FL7--243R CR-05FL7--40K2 CR-12JP4--680R CRCW06036K80FKEE M55342K06B2E94RS2 M55342K06B309DRS3 M55342K06B6E81RS3 M55342K08B100DRWB M55342M05B200DRWB MC0603-511-JTW 742C083750JTR MCR01MZPF1202 MCR01MZPF1601 MCR01MZPF1800 MCR01MZPF6201 MCR01MZPF9102 MCR01MZPJ113 MCR01MZPJ121 MCR01MZPJ125 MCR01MZPJ203 MCR01MZPJ751 MCR01MZPJ822 MCR03EZHJ103 MCR03EZPFX1272 MCR03EZPJ123 MCR03EZPJ270 MCR03EZPJ821 MCR10EZPF1102 MCR10EZPF2003 MCR10EZPF2700 MCR18EZPJ330 RC0603F1473CS RC0603F150CS RC1005F1152CS RC1005F1182CS RC1005F1372CS RC1005F183CS RC1005F1911CS RC1005F1912CS RC1005F203CS RC1005F2052CS RC1005F241CS RC1005F2431CS RC1005F3011CS RC1005F303CS RC1005F4321CS RC1005F4642CS RC1005F471CS RC1005F4751CS

