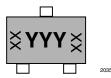


Vishay Semiconductors

GL05T to GL24T


Low Capacitance ESD Protection Diodes for High-Speed Data Interfaces

www.vishay.com

MARKING

(example only)

Ε

G

Bar = cathode marking

YYY = type code (see table below)

XX = date code

LINKS TO ADDITIONAL RESOURCES

Н

GL05T-

GL05T-

FEATURES

- IEC 61000-4-5 (lightning) see I_{PPM} below
- ESD immunity acc. IEC 61000-4-2 ± 8 kV contact discharge
 - ± 15 kV air discharge
- ESD capability according to AEC-Q101: human body model: class H3B: > 8 kV
- SOT-23 package
- · Low capacitance for high speed data lines, cellular handsets, USB port protection, LAN equipment, peripherals
- e3 Sn
- AEC-Q101 qualified available
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

-18

-18

GL05T-HE3-18 GL05T-HG3-18

COMPLIANT HALOGEN FREE

ORDERING INFORMATION									
	ENVIR	ONMENTAL AN	ID QUALITY C	ODE	PACKAG	ING CODE			
PART NUMBER (EXAMPLE)	AEC-Q101 QUALIFIED	RoHS-COM LEAD (P	MPLIANT + b)-FREE	TIN PLATED	3K PER 7" REEL (8 mm TAPE),	10K PER 13" REEL (8 mm TAPE),	ORDERING CODE (EXAMPLE)		
(,	QUALIFIED	STANDARD	GREEN	PLATED	15K/BOX = MOQ	10K/BOX = MOQ			
GL05T-		E		3	-08		GL05T-E3-08		
GL05T-			G	3	-08		GL05T-G3-08		
GL05T-	Н	Е		3	-08		GL05T-HE3-08		
GL05T-	Н		G	3	-08		GL05T-HG3-08		
GL05T-		E		3		-18	GL05T-E3-18		
GL05T-			G	3		-18	GL05T-G3-18		

3

PACK	PACKAGE DATA									
DEVICE NAME	PACKAGE NAME	TYPE CODE	ENVIRONMENTAL STATUS	WEIGHT	MOLDING COMPOUND FLAMMABILITY RATING	MOISTURE SENSITIVITY LEVEL	SOLDERING CONDITIONS			
GL05T	SOT-23	L05	Standard	8.8 mg	UL 94 V-0	MSL level 1 (according J-STD-020)	Peak temperature max. 260 °C			
GLOST	301-23	L06	Green	8.1 mg	UL 94 V-0	MSL level 1 (according J-STD-020)	Peak temperature max. 260 °C			
GL12T	SOT-23	L12	Standard	8.8 mg	UL 94 V-0	MSL level 1 (according J-STD-020)	Peak temperature max. 260 °C			
GLIZI	L13		MSI level 1		MSL level 1 (according J-STD-020)	Peak temperature max. 260 °C				
GL15T	SOT-23	L15	Standard	8.8 mg	UL 94 V-0	MSL level 1 (according J-STD-020)	Peak temperature max. 260 °C			
GLIST	301-23	L16	Green	8.1 mg	UL 94 V-0	MSL level 1 (according J-STD-020)	Peak temperature max. 260 °C			
GL24T	SOT-23	L24	Standard	8.8 mg	UL 94 V-0	MSL level 1 (according J-STD-020)	Peak temperature max. 260 °C			
GLZ41	301-23	L25	Green	8.1 mg	UL 94 V-0	MSL level 1 (according J-STD-020)	Peak temperature max. 260 °C			

Rev. 2.5, 20-May-2021 Document Number: 85809

www.vishay.com

GL05T to GL24T

,	Vishay	Semiconductors

ABSOLUTE MAXIMUM RATINGS GL05T							
PARAMETER	TEST	CONDITIONS	SYMBOL	VALUE	UNIT		
Peak pulse current	8/20 µs	Din 1 2 (nin 2 n a)	I _{PPM}	25	Α		
Peak pulse power	8/20 µs waveform	Pin 1-2 (pin 3 n.c.)	P _{PP}	300	W		
ESD immunity	Contact discharge	acc. IEC 61000-4-2; 10 pulses	V	± 8	kV		
ESD IIIIIIUIIIIY	Air discharge acc. I	IEC 61000-4-2; 10 pulses	V_{ESD}	± 15	kV		
Blocking voltage	I _B = 1 μA	Pin 2-1 or pin 2-3	V _B	70	V		
Operating temperature	Junction temperatu	ire	TJ	-55 to +150	°C		
Storage temperature			T _{STG}	-55 to +150	°C		

ABSOLUTE MAXIMUM RATINGS GL12T									
PARAMETER	TEST	TEST CONDITIONS		VALUE	UNIT				
Peak pulse current	8/20 µs	Pin 1-2 (pin 3 n.c.)	I _{PPM}	12	Α				
Peak pulse power	8/20 µs waveform	Pin 1-2 (pin 3 n.c.)	P _{PP}	300	W				
ESD immunity	Contact discharge	Contact discharge acc. IEC 61000-4-2; 10 pulses		± 8	kV				
ESD illillidnity	Air discharge acc.	IEC 61000-4-2; 10 pulses	V_{ESD}	± 15	kV				
Blocking voltage	$I_B = 1 \mu A$	Pin 2-1 or pin 2-3	V_{B}	70	V				
Operating temperature	Junction temperatu	ıre	T_J	-55 to +150	°C				
Storage temperature			T _{STG}	-55 to +150	°C				

ABSOLUTE MAXIMUM RATINGS GL15T							
PARAMETER	TEST	CONDITIONS	SYMBOL	VALUE	UNIT		
Peak pulse current	8/20 µs	Pin 1-2 (pin 3 n.c.)	I _{PPM}	10	Α		
Peak pulse power	8/20 µs waveform	Pin 1-2 (pin 3 n.c.)	P _{PP}	300	W		
ESD immunity	Contact discharge	acc. IEC 61000-4-2; 10 pulses	\/	± 8	kV		
ESD IIIIIIIIIIIII	Air discharge acc. I	EC 61000-4-2; 10 pulses	V_{ESD}	± 15	kV		
Blocking voltage	I _B = 1 μA	Pin 2-1 or pin 2-3	V _B	70	V		
Operating temperature	Junction temperatu	ire	T _J	-55 to +150	°C		
Storage temperature			T _{STG}	-55 to +150	°C		

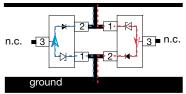
ABSOLUTE MAXIMUM RATINGS GL24T								
PARAMETER	TEST	CONDITIONS	SYMBOL	VALUE	UNIT			
Peak pulse current	8/20 μs	Pin 1-2 (pin 3 n.c.)	I _{PPM}	5	Α			
Peak pulse power	8/20 µs waveform	Fiii 1-2 (βiii 3 ii.c.)	P _{PP}	300	W			
ESD immunity	Contact discharge	acc. IEC 61000-4-2; 10 pulses		± 8	kV			
ESD IIIIIIdility	Air discharge acc. I	EC 61000-4-2; 10 pulses	V_{ESD}	± 15	kV			
Blocking voltage	I _B = 1 μA	Pin 2-1 or pin 2-3	V _B	70	V			
Operating temperature	Junction temperatu	re	TJ	-55 to +150	°C			
Storage temperature			T _{STG}	-55 to +150	°C			

The GLxxT contains an avalanche diode (pin 3-1) and a switching diode (pin 3-2). With pin 1 connected to the signal or data line and pin 2 connected to ground both diodes are in series (pin 3 remains unconnected). The big and robust avalanche diode, driven in reverse direction, provides the working range V_{RWM} of 5 V, 12 V, 15 V or 24 V. Due to its size the capacitance of the avalanche diode is in the range of typ. 260 pF (GL05T) and 65 pF (GL24T). The small switching diode in series has a low capacitance of just 2.5 pF (typ.). As both diodes are in series (with pin 3 not connected) the total capacitance of both diodes measured between pin 1 and 2 is as low as the capacitance of the switching diode.

Before the GLxxT can provide this low capacitance the big capacitance of the avalanche diode has to be charged up with the first signal or data pulses. This is usually no problem for digital signals like USB or other data ports.

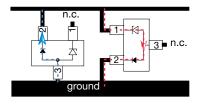
With the GLxxT a signal or data line can be protected against positive transients only. For negative transients another GLxxT can be used to provide a back path for the negative transients as well.

GL05T to GL24T


Vishay Semiconductors

www.vishay.com

Data line


Uni
Unidirectional clamping
performance for positive
transients only.

Data line

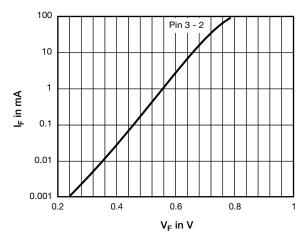
BiSy
Bidirectional and Symmetrical
clamping performance for positive
and negative transients.

Data line

BiAs
Bidirectional and Asymmetrical
clamping performance for positive
and negative transients.

ELECTRICAL CHARACTERISTICS GL05T (T _{amb} = 25 °C unless otherwise specified) pin 1 to pin 2; pin 3 not connected							
PARAMETER	TEST CONDITIONS/REMARKS	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Protection paths	Number of lines which can be protected	N _{channel}	-	-	1	lines	
Reverse stand-off voltage	Max. reverse working voltage	V_{RWM}	-	-	5	V	
Reverse voltage	at I _R = 20 μA	V _R	5	-	-	V	
Reverse current	at V _R = 5 V	I _R	-	-	20	μΑ	
Reverse breakdown voltage	at I _R = 1 mA	V_{BR}	6.9	7.5	8.0	V	
Davaras alamaina valtaga	at I _{PP} = 1 A	W	-	-	9.8	V	
Reverse clamping voltage	at I _{PP} = 5 A	V _C	-	-	11	V	
Capacitance	at $V_R = 0 V$; $f = 1 MHz$	C _D	=	2.5	5	pF	

ELECTRICAL CHARACTERISTICS GL12T (T _{amb} = 25 °C unless otherwise specified) pin 1 to pin 2; pin 3 not connected								
PARAMETER	TEST CONDITIONS/REMARKS	SYMBOL	MIN.	TYP.	MAX.	UNIT		
Protection paths	Number of lines which can be protected	N _{channel}	-	-	1	lines		
Reverse stand-off voltage	Max. reverse working voltage	V_{RWM}	-	-	12	V		
Reverse voltage	at I _R = 1 μA	V_{R}	12	-	-	V		
Reverse current	at V _R = 12 V	I _R	-	-	1	μA		
Reverse breakdown voltage	at I _R = 1 mA	V_{BR}	13.3	14.3	17.2	V		
Reverse clamping voltage	at I _{PP} = 1 A	V _C	-	-	19	V		
neverse clamping voltage	at I _{PP} = 5 A	v _C	-	-	24	V		
Capacitance	at $V_R = 0 V$; $f = 1 MHz$	C_D	-	2.5	5	pF		


ELECTRICAL CHARACTERISTICS GL15T ($T_{amb} = 25$ °C unless otherwise specified) pin 1 to pin 2; pin 3 not connected								
PARAMETER	TEST CONDITIONS/REMARKS	SYMBOL	MIN.	TYP.	MAX.	UNIT		
Protection paths	Number of lines which can be protected	N _{channel}	-	-	1	lines		
Reverse stand-off voltage	Max. reverse working voltage	V_{RWM}	-	-	15	V		
Reverse voltage	at I _R = 1 μA	V _R	15	-	-	V		
Reverse current	at V _R = 15 V	I _R	-	-	1	μΑ		
Reverse breakdown voltage	at I _R = 1 mA	V_{BR}	16.7	17.7	22	V		
Deverse elemning veltage	at I _{PP} = 1 A	V	-	-	24	V		
Reverse clamping voltage	at I _{PP} = 5 A	V _C	-	-	33	V		
Capacitance	at $V_R = 0 V$; $f = 1 MHz$	C _D	-	2.5	5	pF		

GL05T to GL24T

Vishay Semiconductors

ELECTRICAL CHARACTERISTICS GL24T (T _{amb} = 25 °C unless otherwise specified) pin 1 to pin 2; pin 3 not connected									
PARAMETER	TEST CONDITIONS/REMARKS	SYMBOL	MIN.	TYP.	MAX.	UNIT			
Protection paths	Number of lines which can be protected	N _{channel}	=	-	1	lines			
Reverse stand-off voltage	Max. reverse working voltage	V _{RWM}	=	-	24	V			
Reverse voltage	at I _R = 1 μA	V _R	24	-	-	V			
Reverse current	at V _R = 24 V	I _R	=	-	1	μA			
Reverse breakdown voltage	at I _R = 1 mA	V _{BR}	26.7	28.2	33	V			
Payersa alamping valtage	at I _{PP} = 1 A	V	=	-	43	V			
Reverse clamping voltage	at I _{PP} = 5 A	V _C	=	-	55	V			
Capacitance	at $V_R = 0 V$; $f = 1 MHz$	C _D	=	2.5	5	pF			

www.vishay.com

Fig. 1 - Typical Forward Current I_F vs. Forward Voltage V_F

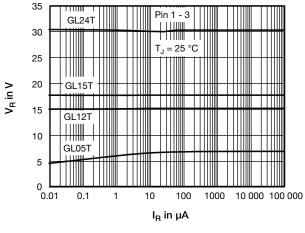
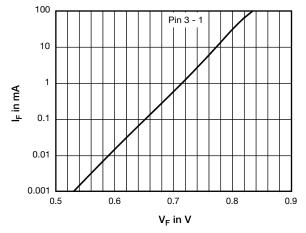
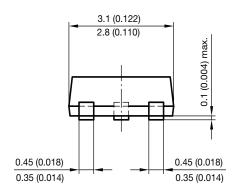
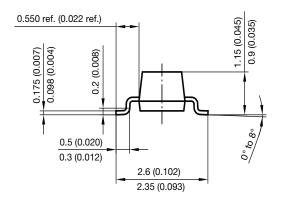
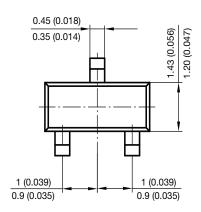


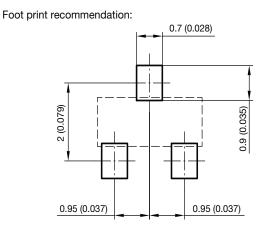
Fig. 3 - Typical Reverse Voltage V_{R} vs. Reverse Current I_{R}



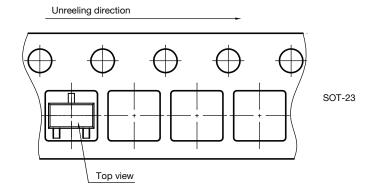

Fig. 2 - Typical Forward Current I_F vs. Forward Voltage V_F




GL05T to GL24T


Vishay Semiconductors

PACKAGE DIMENSIONS in millimeters (inches): SOT-23



Document no.: 6.541-5014.01-4 Rev. 8 - Date: 23. Sep. 2009

Orientation in carrier tape SOT-23 S8-V-3929.01-006 (4) 04.02.2010 22607

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for ESD Suppressors / TVS Diodes category:

Click to view products by Vishay manufacturer:

Other Similar products are found below:

60KS200C D12V0H1U2WS-7 D18V0L1B2LP-7B 82356050220 D5V0M5U6V-7 NTE4902 P4KE27CA P6KE11CA P6KE39CA-TP
P6KE8.2A SA110CA SA60CA SA64CA SMBJ12CATR SMBJ8.0A SMLJ30CA-TP ESD101-B1-02ELS E6327 ESD112-B1-02EL E6327
ESD119B1W01005E6327XTSA1 ESD5V0L1B02VH6327XTSA1 ESD7451N2T5G 19180-510 CPDT-5V0USP-HF 3.0SMCJ33CA-F
3.0SMCJ36A-F HSPC16701B02TP D3V3Q1B2DLP3-7 D55V0M1B2WS-7 DESD5V0U1BL-7B DRTR5V0U4SL-7 SCM1293A-04SO
ESD200-B1-CSP0201 E6327 ESD203-B1-02EL E6327 SM12-7 SMF8.0A-TP SMLJ45CA-TP CEN955 W/DATA 82350120560
82356240030 VESD12A1A-HD1-GS08 CPDUR5V0R-HF CPDUR24V-HF CPDQC5V0U-HF CPDQC5V0USP-HF CPDQC5V0-HF
D1213A-01LP4-7B D1213A-02WL-7 ESDLIN1524BJ-HQ 5KP100A 5KP15A