

Single-Line ESD Protection in SOT-23

MARKING (example only)

YYY = type code (see table below) XX = date code

GSOT05-

Н

FEATURES

- Single-line ESD protection device
- ESD immunity acc. IEC 61000-4-2
 - ± 30 kV contact discharge
 - ± 30 kV air discharge
- ESD capability according to AEC-Q101: human body model: class H3B: > 8 kV
- Space saving SOT-23 package
- e3 Sn
- AEC-Q101 qualified available

-18

HALOGEN FREE

GREEN (5-2008)

GSOT05-HG3-18

DESIGN SUPPORT TOOLS AVAILABLE

ORDERING INFORMATION									
	ENVIR	ONMENTAL AN	ID QUALITY C	ODE	PACKAG	ING CODE			
PART NUMBER (EXAMPLE)	AEC-Q101	RoHS-COM LEAD (P	MPLIANT + b)-FREE	TIN PLATED	3K PER 7" REEL (8 mm TAPE),	10K PER 13" REEL (8 mm TAPE),	ORDERING CODE (EXAMPLE)		
(LXAIVIF LL)	QUALIFIED	STANDARD GREEN PLATED 15K/BOX = MOC	15K/BOX = MOQ	10K/BOX = MOQ					
GSOT05-		E		3	-08		GSOT05-E3-08		
GSOT05-			G	3	-08		GSOT05-G3-08		
GSOT05-	Н	Е		3	-08		GSOT05-HE3-08		
GSOT05-	Н		G	3	-08		GSOT05-HG3-08		
GSOT05-		E		3		-18	GSOT05-E3-18		
GSOT05-			G	3		-18	GSOT05-G3-18		
CSOTOS	Ц			2		10	CONTRA LIES 19		

PACKA	PACKAGE DATA							
DEVICE NAME	PACKAGE NAME	TYPE CODE	ENVIRONMENTAL STATUS	WEIGHT	MOLDING COMPOUND FLAMMABILITY RATING	MOISTURE SENSITIVITY LEVEL	SOLDERING CONDITIONS	
GSOT03	SOT-23	03	Standard	8.8 mg	UL 94 V-0	MSL level 1	Peak temperature max. 260 °C	
400100	001 20	03G	Green	8.1 mg	020470	(according J-STD-020)	Tour temperature max. 200 °C	
GSOT04	SOT-23	04	Standard	8.8 mg	UL 94 V-0	MSL level 1	Peak temperature max. 260 °C	
400104	001 20	04G	Green	8.1 mg	023470	(according J-STD-020)	T can temperature max. 200 °C	
GSOT05	SOT-23	05	Standard	8.8 mg	UL 94 V-0	MSL level 1	Peak temperature max. 260 °C	
430103	301-23	05G	Green	8.1 mg	(according J-STD-02		Teak temperature max. 200 O	
GSOT08	SOT-23	08	Standard	8.8 mg	UL 94 V-0	MSL level 1	Peak temperature max. 260 °C	
G30108	301-23	08G	Green	8.1 mg	OL 94 V-0	(according J-STD-020)	Feak temperature max. 200 C	
GSOT12	SOT-23	12	Standard	8.8 mg	UL 94 V-0	MSL level 1	Peak temperature max. 260 °C	
G30112	301-23	12G	Green	8.1 mg	OL 94 V-0	(according J-STD-020)	Feak temperature max. 200 C	
GSOT15	SOT-23	15	Standard	8.8 mg	UL 94 V-0	MSL level 1	Peak temperature max. 260 °C	
G30113	301-23	15G	Green	8.1 mg	OL 94 V-0	(according J-STD-020)	Feak temperature max. 200 C	
GSOT24	SOT-23	24	Standard	8.8 mg	UL 94 V-0	MSL level 1	Dook tomporeture may 260 °C	
GSU124	501-23	24G	Green	8.1 mg	OL 94 V-0	(according J-STD-020)	Peak temperature max. 260 °C	
GSOT36	SOT-23	36	Standard	8.8 mg	UL 94 V-0	MSL level 1	Dook tomporeture may 260 °C	
430136	301-23	36G	Green	8.1 mg	OL 94 V-0	(according J-STD-020)	Peak temperature max. 260 °C	

ABSOLUTE MAXIMUM RATINGS GSOT03						
PARAMETER	TEST CONDITIONS	SYMBOL	VALUE	UNIT		
Peak pulse current	Pin 3 to 1 acc. IEC 61000-4-5, $t_p = 8/20 \mu s$; single shot	I _{PPM}	30	Α		
Peak pulse power	Pin 3 to 1 acc. IEC 61000-4-5, t _p = 8/20 μs; single shot	P _{PP}	369	W		
ESD immunity	Contact discharge acc. IEC 61000-4-2; 10 pulses	V	± 30	kV		
ESD initiditity	Air discharge acc. IEC 61000-4-2; 10 pulses	V _{ESD}	± 30	kV		
Operating temperature	Junction temperature	T_J	-40 to +125	°C		
Storage temperature		T _{STG}	-55 to +150	°C		

ABSOLUTE MAXIMUM RATINGS GSOT04						
PARAMETER	TEST CONDITIONS	SYMBOL	VALUE	UNIT		
Peak pulse current	Pin 3 to 1 acc. IEC 61000-4-5, t _p = 8/20 μs; single shot	I _{PPM}	30	А		
Peak pulse power	Pin 3 to 1 acc. IEC 61000-4-5, $t_p = 8/20 \mu s$; single shot	P _{PP}	429	W		
CCD improvements.	Contact discharge acc. IEC 61000-4-2; 10 pulses	V	± 30	kV		
ESD immunity	Air discharge acc. IEC 61000-4-2; 10 pulses	V_{ESD}	± 30	kV		
Operating temperature	Junction temperature	T _J	-40 to +125	°C		
Storage temperature		T _{STG}	-55 to +150	°C		

ABSOLUTE MAXIMUM RATINGS GSOT05						
PARAMETER	TEST CONDITIONS	SYMBOL	VALUE	UNIT		
Peak pulse current	Pin 3 to 1 acc. IEC 61000-4-5, $t_p = 8/20 \mu s$; single shot	I _{PPM}	30	Α		
Peak pulse power	Pin 3 to 1 acc. IEC 61000-4-5, $t_p = 8/20 \mu s$; single shot	P _{PP}	480	W		
ESD immunity	Contact discharge acc. IEC 61000-4-2; 10 pulses	V	± 30	kV		
ESD infillidity	Air discharge acc. IEC 61000-4-2; 10 pulses	V _{ESD}	± 30	kV		
Operating temperature	Junction temperature	TJ	-40 to +125	°C		
Storage temperature		T _{STG}	-55 to +150	°C		

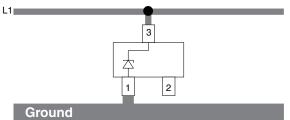
ABSOLUTE MAXIMUM RATINGS GSOT08						
PARAMETER	TEST CONDITIONS	SYMBOL	VALUE	UNIT		
Peak pulse current	Pin 3 to 1 acc. IEC 61000-4-5, $t_p = 8/20 \mu s$; single shot	I _{PPM}	18	А		
Peak pulse power	Pin 3 to 1 acc. IEC 61000-4-5, $t_p = 8/20 \mu s$; single shot	P_{PP}	345	W		
ESD immunity	Contact discharge acc. IEC 61000-4-2; 10 pulses	V	± 30	kV		
ESD Illillurilly	Air discharge acc. IEC 61000-4-2; 10 pulses	V_{ESD}	± 30	kV		
Operating temperature	Junction temperature	TJ	-40 to +125	°C		
Storage temperature		T _{STG}	-55 to +150	°C		

ABSOLUTE MAXIMUM RATINGS GSOT12						
PARAMETER	TEST CONDITIONS	SYMBOL	VALUE	UNIT		
Peak pulse current	Pin 3 to 1 acc. IEC 61000-4-5, t _p = 8/20 μs; single shot	I _{PPM}	12	А		
Peak pulse power	Pin 3 to 1 acc. IEC 61000-4-5, $t_p = 8/20 \mu s$; single shot	P _{PP}	312	W		
ESD immunity	Contact discharge acc. IEC 61000-4-2; 10 pulses	V	± 30	kV		
ESD illillidility	Air discharge acc. IEC 61000-4-2; 10 pulses	V _{ESD}	± 30	kV		
Operating temperature	Junction temperature	T_J	-40 to +125	°C		
Storage temperature		T _{STG}	-55 to +150	°C		

ABSOLUTE MAXIMUM RATINGS GSOT15						
PARAMETER	TEST CONDITIONS	SYMBOL	VALUE	UNIT		
Peak pulse current	Pin 3 to 1 acc. IEC 61000-4-5, t _p = 8/20 μs; single shot	I _{PPM}	8	Α		
Peak pulse power	Pin 3 to 1 acc. IEC 61000-4-5, t _p = 8/20 μs; single shot	P _{PP}	230	W		
ECD image units	Contact discharge acc. IEC 61000-4-2; 10 pulses	V	± 30	kV		
ESD immunity	Air discharge acc. IEC 61000-4-2; 10 pulses	V_{ESD}	± 30	kV		
Operating temperature	Junction temperature	T _J	-40 to +125	°C		
Storage temperature		T _{STG}	-55 to +150	°C		

ABSOLUTE MAXIMUM RATINGS GSOT24						
PARAMETER	TEST CONDITIONS	SYMBOL	VALUE	UNIT		
Peak pulse current	Pin 3 to 1 acc. IEC 61000-4-5, t _p = 8/20 μs; single shot	I _{PPM}	5	А		
Peak pulse power	Pin 3 to 1 acc. IEC 61000-4-5, t _p = 8/20 μs; single shot	P _{PP}	235	W		
CCD immunity	Contact discharge acc. IEC 61000-4-2; 10 pulses	V	± 30	kV		
ESD immunity	Air discharge acc. IEC 61000-4-2; 10 pulses	V_{ESD}	± 30	kV		
Operating temperature	Junction temperature	T_J	-40 to +125	°C		
Storage temperature		T _{STG}	-55 to +150	°C		

ABSOLUTE MAXIMUM RATINGS GSOT36						
PARAMETER	TEST CONDITIONS	SYMBOL	VALUE	UNIT		
Peak pulse current	Pin 3 to 1 acc. IEC 61000-4-5, t_p = 8/20 μ s; single shot	I _{PPM}	3.5	Α		
Peak pulse power	Pin 3 to 1 acc. IEC 61000-4-5, $t_p = 8/20 \mu s$; single shot	P _{PP}	248	W		
ESD immunity	Contact discharge acc. IEC 61000-4-2; 10 pulses	V	± 30	kV		
ESD IIIIIIdility	Air discharge acc. IEC 61000-4-2; 10 pulses	V _{ESD}	± 30	kV		
Operating temperature	Junction temperature	T_J	-40 to +125	°C		
Storage temperature		T _{STG}	-55 to +150	°C		


BIAs-MODE (1-line Bidirectional Asymmetrical protection mode)


With the GSOTxx one signal- or data-lines (L1) can be protected against voltage transients. With pin 1 connected to ground and pin 3 connected to a signal- or data-line which has to be protected. As long as the voltage level on the data- or signal-line is between 0 V (ground level) and the specified maximum reverse working voltage (V_{RWM}) the protection diode between pin 1 and pin 3 offers a high isolation to the ground line. The protection device behaves like an open switch.

As soon as any positive transient voltage signal exceeds the breakdown voltage level of the protection diode, the diode becomes conductive and shorts the transient current to ground. Now the protection device behaves like a closed switch. The clamping voltage (V_C) is defined by the breakdown voltage (V_{BR}) level plus the voltage drop at the series impedance (resistance and inductance) of the protection diode.

Any negative transient signal will be clamped accordingly. The negative transient current is flowing in the forward direction through the protection diode. The low forward voltage (V_F) clamps the negative transient close to the ground level.

Due to the different clamping levels in forward and reverse direction the GSOTxx clamping behavior is Bidirectional and Asymmetrical (BiAs).

20422

ELECTRICAL CHARACTERISTICS GSOT03 (T _{amb} = 25 °C unless otherwise specified) between pin 3 and pin 1							
PARAMETER	TEST CONDITIONS/REMARKS	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Protection paths	Number of lines which can be protected	N _{channel}	-	-	1	lines	
Reverse stand-off voltage	Max. reverse working voltage	V_{RWM}	-	-	3.3	V	
Reverse voltage	at I _R = 100 μA	V_R	3.3	-	-	V	
Reverse current	at V _R = 3.3 V	I _R	-	-	100	μΑ	
Reverse breakdown voltage	at I _R = 1 mA	V_{BR}	4	4.6	5.5	V	
Deverse elements valtage	at I _{PP} = 1 A	V	-	5.7	7.5	V	
Reverse clamping voltage	at I _{PP} = I _{PPM} = 30 A	V _C	-	10	12.3	V	
Forward alamaina valtaga	at I _{PP} = 1 A	M	-	1	1.2	V	
Forward clamping voltage	at I _{PP} = I _{PPM} = 30 A	V _F	-	4.5	-	V	
Canacitanas	at V _R = 0 V; f = 1 MHz	-	-	420	600	pF	
Capacitance	at V _R = 1.6 V; f = 1 MHz	- C _D	-	260	-	pF	

ELECTRICAL CHARACTERISTICS GSOT04 ($T_{amb} = 25$ °C unless otherwise specified) between pin 3 and pin 1							
PARAMETER	TEST CONDITIONS/REMARKS	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Protection paths	Number of lines which can be protected	N _{channel}	-	-	1	lines	
Reverse stand-off voltage	Max. reverse working voltage	V_{RWM}	-	-	4	V	
Reverse voltage	at I _R = 20 μA	V_R	4	-	-	V	
Reverse current	at V _R = 4 V	I _R	-	-	20	μΑ	
Reverse breakdown voltage	at I _R = 1 mA	V_{BR}	5	6.1	7	V	
Deverse elements velters	at I _{PP} = 1 A	V	-	7.5	9	V	
Reverse clamping voltage	at I _{PP} = I _{PPM} = 30 A	V _C	-	11.2	14.3	V	
Famous dans in a valtage	at I _{PP} = 1 A		-	1	1.2	V	
Forward clamping voltage	at I _{PP} = I _{PPM} = 30 A	V _F	-	4.5	-	V	
0:	at $V_R = 0 V$; $f = 1 MHz$		-	310	450	pF	
Capacitance	at V _R = 2 V; f = 1 MHz	- C _D	-	200	-	pF	

ELECTRICAL CHARACTERISTICS GSOT05 (T _{amb} = 25 °C unless otherwise specified) between pin 3 and pin 1						
PARAMETER	TEST CONDITIONS/REMARKS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Protection paths	Number of lines which can be protected	N _{channel}	-	-	1	lines
Reverse stand-off voltage	Max. reverse working voltage	V_{RWM}	=	-	5	V
Reverse voltage	at I _R = 10 μA	V_R	5	-	-	V
Reverse current	at V _R = 5 V	I _R	=	-	10	μΑ
Reverse breakdown voltage	at I _R = 1 mA	V_{BR}	6	6.8	8	V
	at I _{PP} = 1 A	V _C	=	7	8.7	V
Reverse clamping voltage	at I _{PP} = I _{PPM} = 30 A		=	12	16	V
Forward clamping voltage	at I _{PP} = 1 A	V _F	-	1	1.2	V
	at I _{PP} = I _{PPM} = 30 A		-	4.5	-	V
Capacitance	at V _R = 0 V; f = 1 MHz	- C _D	-	260	350	pF
	at V _R = 2.5 V; f = 1 MHz		-	150	-	pF

ELECTRICAL CHARACTERISTICS GSOT08 (T _{amb} = 25 °C unless otherwise specified) between pin 3 and pin 1						
PARAMETER	TEST CONDITIONS/REMARKS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Protection paths	Number of lines which can be protected	N _{channel}	=	-	1	lines
Reverse stand-off voltage	Max. reverse working voltage	V_{RWM}	-	-	8	V
Reverse voltage	at I _R = 5 μA	V_R	8	-	-	V
Reverse current	at $V_R = 8 V$	I _R	-	-	5	μΑ
Reverse breakdown voltage	at I _R = 1 mA	V_{BR}	9	10	11	V
Payaraa alamping valtaga	at I _{PP} = 1 A	V _C	-	10.7	13	V
Reverse clamping voltage	at I _{PP} = I _{PPM} = 18 A		-	15.2	19.2	V
Forward clamping voltage	at I _{PP} = 1 A	V _F	-	1	1.2	V
	at I _{PP} = I _{PPM} = 18 A		-	3	-	V
Capacitance	at V _R = 0 V; f = 1 MHz	- C _D	-	160	250	pF
	at V _R = 4 V; f = 1 MHz		-	80	-	pF

ELECTRICAL CHARACTERISTICS GSOT12 (T _{amb} = 25 °C unless otherwise specified) between pin 3 and pin 1							
PARAMETER	TEST CONDITIONS/REMARKS	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Protection paths	Number of lines which can be protected	N _{channel}	=	-	1	lines	
Reverse stand-off voltage	Max. reverse working voltage	V_{RWM}	=	-	12	V	
Reverse voltage	at I _R = 1 μA	V_R	12	-	-	V	
Reverse current	at V _R = 12 V	I _R	-	-	1	μΑ	
Reverse breakdown voltage	at I _R = 1 mA	V_{BR}	13.5	15	16.5	V	
Deverse elemning veltage	at I _{PP} = 1 A	- V _C	-	15.4	18.7	V	
Reverse clamping voltage	at I _{PP} = I _{PPM} = 12 A		-	21.2	26	V	
Forward clamping voltage	at I _{PP} = 1 A	.,	-	1	1.2	V	
	at I _{PP} = I _{PPM} = 12 A	V _F	-	2.2	-	V	
Capacitance	at V _R = 0 V; f = 1 MHz	- C _D	-	115	150	pF	
	at V _R = 6 V; f = 1 MHz		-	50	-	pF	

ELECTRICAL CHARACTERISTICS GSOT15 (T _{amb} = 25 °C unless otherwise specified) between pin 3 and pin 1							
PARAMETER	TEST CONDITIONS/REMARKS	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Protection paths	Number of lines which can be protected	N _{channel}	=	-	1	lines	
Reverse stand-off voltage	Max. reverse working voltage	V_{RWM}	=	-	15	V	
Reverse voltage	at I _R = 1 μA	V_R	15	-	-	V	
Reverse current	at V _R = 15 V	I _R	-	-	1	μA	
Reverse breakdown voltage	at I _R = 1 mA	V_{BR}	16.5	18	20	V	
	at I _{PP} = 1 A	V _C	=	19.4	23.5	V	
Reverse clamping voltage	at I _{PP} = I _{PPM} = 8 A		-	24.8	28.8	V	
Forward clamping voltage	at I _{PP} = 1 A	V _F	-	1	1.2	V	
	at I _{PP} = I _{PPM} = 8 A		-	1.8	=	V	
Capacitance	at V _R = 0 V; f = 1 MHz	- C _D	-	90	120	pF	
	at V _R = 7.5 V; f = 1 MHz		=	35	-	pF	

ELECTRICAL CHARACTERISTICS GSOT24 (T _{amb} = 25 °C unless otherwise specified) between pin 3 and pin 1						
PARAMETER	TEST CONDITIONS/REMARKS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Protection paths	Number of lines which can be protected	N _{channel}	-	-	1	lines
Reverse stand-off voltage	Max. reverse working voltage	V_{RWM}	-	-	24	V
Reverse voltage	at I _R = 1 μA	V_R	24	-	-	V
Reverse current	at V _R = 24 V	I _R	-	-	1	μΑ
Reverse breakdown voltage	at I _R = 1 mA	V_{BR}	27	30	33	V
Deverse elemning veltage	at I _{PP} = 1 A	V _C	-	34	41	V
Reverse clamping voltage	at I _{PP} = I _{PPM} = 5 A		-	41	47	V
Forward clamping voltage	at I _{PP} = 1 A		-	1	1.2	V
	at I _{PP} = I _{PPM} = 5 A	V _F	-	1.4	-	V
Capacitance	at V _R = 0 V; f = 1 MHz	- C _D	-	65	80	pF
	at V _R = 12 V; f = 1 MHz		-	20	=	pF

ELECTRICAL CHARACTERISTICS GSOT36 (T _{amb} = 25 °C unless otherwise specified) between pin 3 and pin 1						
PARAMETER	TEST CONDITIONS/REMARKS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Protection paths	Number of lines which can be protected	N _{channel}	=	-	1	lines
Reverse stand-off voltage	Max. reverse working voltage	V_{RWM}	=	-	36	V
Reverse voltage	at I _R = 1 μA	V_R	36	-	-	V
Reverse current	at V _R = 36 V	I _R	-	-	1	μΑ
Reverse breakdown voltage	at I _R = 1 mA	V_{BR}	39	43	47	V
De la constantina alla constantina di constantina d	at I _{PP} = 1 A	V _C	=	49	60	V
Reverse clamping voltage	at I _{PP} = I _{PPM} = 3.5 A		-	59	71	V
Forward clamping voltage	at I _{PP} = 1 A	V _F	-	1	1.2	V
	at I _{PP} = I _{PPM} = 3.5 A		=	1.3	-	V
Capacitance	at V _R = 0 V; f = 1 MHz	- C _D	-	52	65	pF
	at V _R = 18 V; f = 1 MHz		-	12	-	pF

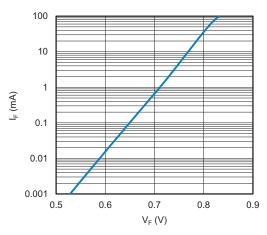


Fig. 1 - Typical Forward Current I_F vs. Forward Voltage V_F

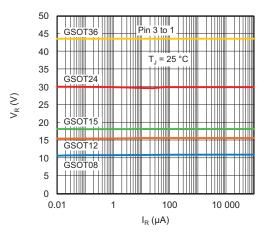


Fig. 2 - Typical Reverse Voltage V_R vs. Reverse Current I_R

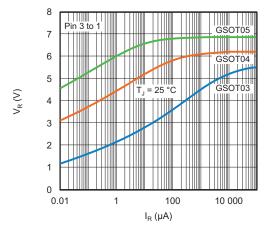


Fig. 3 - Typical Reverse Voltage V_{R} vs. Reverse Current I_{R}

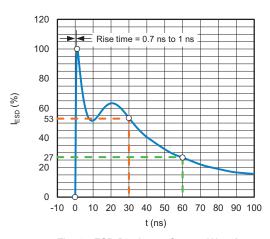


Fig. 4 - ESD Discharge Current Waveform According to IEC 61000-4-2 (330 $\Omega\,/$ 150 pF)

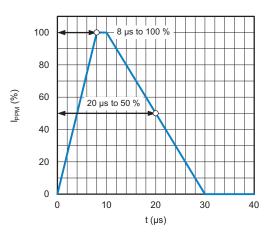


Fig. 5 - 8/20 µs Peak Pulse Current Waveform According to IEC 61000-4-5

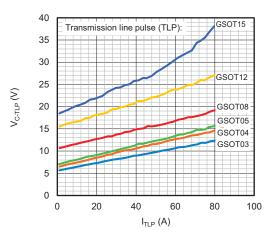


Fig. 6 - Typical Clamping Voltage vs. Peak Pulse Current

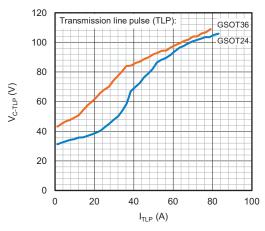


Fig. 7 - Typical Clamping Voltage vs. Peak Pulse Current

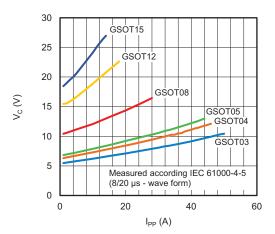


Fig. 8 - Typical Peak Clamping Voltage vs. Peak Pulse Current

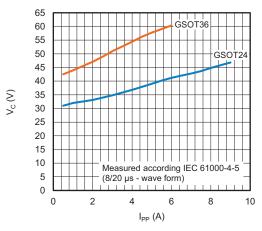
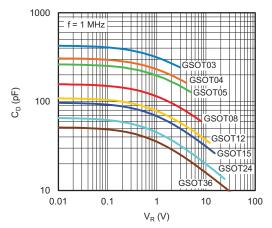
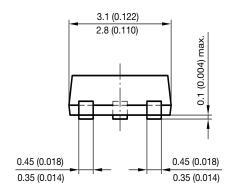
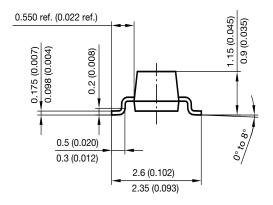
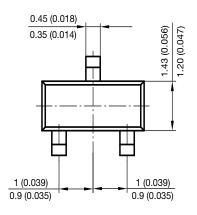
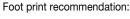
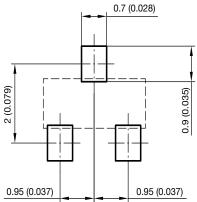
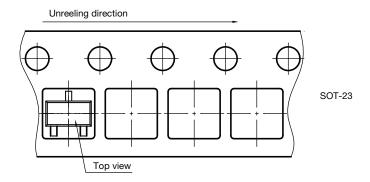


Fig. 9 - Typical Peak Clamping Voltage vs. Peak Pulse Current


Fig. 10 - Typical Capacitance vs. Reverse Voltage


PACKAGE DIMENSIONS in millimeters (inches): SOT-23



Document no.: 6.541-5014.01-4 Rev. 8 - Date: 23. Sep. 2009

17418

Orientation in carrier tape SOT-23 S8-V-3929.01-006 (4) 04.02.2010 22607

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for TVS Diodes - Transient Voltage Suppressors category:

Click to view products by Vishay manufacturer:

Other Similar products are found below:

60KS200C D12V0H1U2WS-7 PSR05-LF-T7 DESD5V0U1BB-7 P6KE39CA-TP JAN1N6461 SMAJ440A-TP SMLJ30CA-TP ESD0P8RFL E6327 ESD101-B1-02ELS E6327 ESD103-B1-02EL E6327 ESD105-B1-02EL E6327 ESD119B1W01005E6327XTSA1 ESD5V0L1B02VH6327XTSA1 3.0SMCJ36A-F JANTX1N6126A JANTX1N6465 DESD5V0U1BL-7B ESD200-B1-CSP0201 E6327 ESD203-B1-02EL E6327 SM12-7 SMF8.0A-TP SMLJ45CA-TP CEN955 W/DATA P6KE15CA-TP ESD101-B1-02EL E6327 P6SMBJ20CA JANTX1N6163A SR2835ESKG SA90CA SA130A SMLJ40CA-TP ESD110-B1-02ELS E6327 ESD205-B1-02ELS E6327 P6KE62A-TP PD10562 CM1771-5006YJQ 5.0SMDJ13CA 5.0SMDJ160A 5.0SMDJ20A 5.0SMDJ36CA 5.0SMDJ70A 5.0SMDJ85A PTVS12VZ1USKNYL 3.0SMCJ24A-13 3.0SMCJ30A-13 30KPA36A-LF 30KPA48CALF 3.0SMCJ28A-13 3.0SMCJ5.0A-13