H11AA1
Vishay Semiconductors

Optocoupler, Phototransistor Output, AC Input, with Base Connection

DESCRIPTION

The H11AA1 is a bi-directional input optically coupled isolator consisting of two inverse parallel gallium arsenide infrared LEDs coupled to a silicon NPN phototransistor in a 6 pin DIP package. The H11AA1 has a minimum CTR of 20%, a CTR symmetry of $1: 3$ and is designed for applications requiring detection or monitoring of $A C$ signals.

FEATURES

- AC or polarity insensitive input
- Built-in reverse polarity input protection
- I/O compatible with integrated circuits
- Industry standard DIP package
- Isolation test voltage: 5300 VRMS

RoHS COMPLIANT

- Compliant to RoHS Directive 2002/95/EC and in accordance to WEEE 2002/96/EC

APPLICATIONS

- Telephone line detection
- AC line motor
- PLC
- Instrumentation

AGENCY APPROVALS

- UL1577, file no. E52744 system code H, double protection
- CSA 93751
- BSI IEC 60950; IEC 60065
- DIN EN 60747-5-2 (VDE0884)/DIN EN 60747-5-5 (pending), available with option 1
- FIMKO

Note

- Additional options may be possible, please contact sales office.
(1) Also available in tubes; do not add T to end.

Vishay Semiconductors Optocoupler, Phototransistor Output,

 AC Input, with Base Connection| ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified) | | | | |
| :---: | :---: | :---: | :---: | :---: |
| PARAMETER | TEST CONDITION | SYMBOL | VALUE | UNIT |
| INPUT | | | | |
| Forward continuous current | | I_{F} | ± 60 | mA |
| Power dissipation | | $\mathrm{P}_{\text {diss }}$ | 100 | mW |
| Derate linearly from $25^{\circ} \mathrm{C}$ | | | 1.3 | $\mathrm{mW} /{ }^{\circ} \mathrm{C}$ |
| OUTPUT | | | | |
| Power dissipation | | $\mathrm{P}_{\text {diss }}$ | 200 | mW |
| Derate linearly from $25^{\circ} \mathrm{C}$ | | | 2.6 | $\mathrm{mW} /{ }^{\circ} \mathrm{C}$ |
| Collector emitter breakdown voltage | | $\mathrm{BV}_{\text {CEO }}$ | 30 | V |
| Emitter base breakdown voltage | | $\mathrm{BV}_{\text {EbO }}$ | 5 | V |
| Collector base breakdown voltage | | $\mathrm{BV}_{\mathrm{CBO}}$ | 70 | V |
| COUPLER | | | | |
| Isolation test voltage (RMS) | Between emitter and detector, referred to standard climate $23{ }^{\circ} \mathrm{C} / 50 \%$ RH, DIN 50014 | VISO | 5300 | $\mathrm{V}_{\text {RMS }}$ |
| Creepage distance | | | ≥ 7 | mm |
| Clearance distance | | | ≥ 7 | mm |
| Comparative tracking index | per DIN IEC 112/VDE 0303, part 1 | CTI | 175 | |
| Isolation resistance | $\mathrm{V}_{10}=500 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ | R_{10} | $\geq 10^{12}$ | Ω |
| | $\mathrm{V}_{\text {IO }}=500 \mathrm{~V}, \mathrm{~T}_{\text {amb }}=10{ }^{\circ} \mathrm{C}$ | R_{IO} | $\geq 10^{11}$ | Ω |
| Storage temperature range | | $\mathrm{T}_{\text {stg }}$ | -55 to + 150 | ${ }^{\circ} \mathrm{C}$ |
| Operating temperature range | | $\mathrm{T}_{\text {amb }}$ | - 55 to + 100 | ${ }^{\circ} \mathrm{C}$ |
| Lead soldering time at $260^{\circ} \mathrm{C}$ | | $\mathrm{T}_{\text {sld }}$ | 10 | s |

Note

- Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute maximum ratings for extended periods of the time can adversely affect reliability.

ELECTRICAL CHARACTERISTCS $\left(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
INPUT						
Forward voltage	$\mathrm{I}_{\mathrm{F}}= \pm 10 \mathrm{~mA}$	V_{F}		1.2	1.5	V
OUTPUT						
Collector emitter breakdown voltage	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$	$B V_{\text {CEO }}$	30			V
Emitter base breakdown voltage	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}$	$\mathrm{BV}_{\text {EBO }}$	5			V
Collector base breakdown voltage	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$	$\mathrm{BV}_{\text {CBO }}$	70			V
Collector emitter leakage current	$\mathrm{V}_{\text {CE }}=10 \mathrm{~V}$	$\mathrm{I}_{\text {CEO }}$		5	100	nA
COUPLER						
Collector emitter saturation voltage	$\mathrm{I}_{\mathrm{F}}= \pm 10 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~mA}$	$\mathrm{V}_{\text {CEsat }}$			0.4	V

Note

- Minimum and maximum values were tested requierements. Typical values are characteristics of the device and are the result of engineering evaluations. Typical values are for information only and are not part of the testing requirements.

CURRENT TRANSFER RATIO $\left(\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
DC current transfer ratio	$\mathrm{F}_{\mathrm{F}}= \pm 10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}$	CTR $_{\mathrm{DC}}$	20			$\%$
Symmetry $(\mathrm{CTR}$ at $+10 \mathrm{~mA}) /(\mathrm{CTR}$ at $-10 \mathrm{~mA})$			0.33	1	3	

TYPICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

Fig. 1 - LED Forward Current vs.Forward Voltage

Fig. 2 - Normalized Non-Saturated and Saturated CTR vs. LED Current

Fig. 3 - Normalized Non-Saturated and Saturated CTR vs. LED Current

Fig. 4 - Normalized Non-Saturated and Saturated CTR vs. LED Current

Fig. 5 - Normalized Non-Saturated and Saturated CTR vs. LED Current

Fig. 6 - Collector Emitter Current vs. Temperature and LED Current

Vishay Semiconductors Optocoupler, Phototransistor Output, AC Input, with Base Connection

Fig. 7 - Collector Emitter Leakage Current vs. Temperature

Fig. 8 - Normalized CTR cb vs. LED Current and Temperature

Fig. 9 - Collector Base Photocurrent vs. LED Current

Fig. 10 - Normalized Photocurrent vs. LED Current

Fig. 11 - Normalized Saturated h_{FE} vs. Base Current and Temperature

Fig. 12 - Normalized Saturated $\mathrm{h}_{\text {FE }}$ vs. Base Current and Temperature

in11aa1_13 R_{L} - Collector Load Resistor ($k \Omega$)
Fig. 13 - Propagation Delay vs. Collector Load Resistor

ih11aa1_14
Fig. 14 - Switching Waveform

ih11aa1_15
Fig. 15 - Switching Schematic

Vishay Semiconductors Optocoupler, Phototransistor Output, AC Input, with Base Connection

PACKAGE DIMENSIONS in millimeters

ISO method A

Option 6

PACKAGE MARKING

Notes

- Only options 1 and 7 are reflected in the package marking.
- The VDE Logo is only marked on option1 parts.
- Tape and reel suffix (T) is not part of the package marking.

Footprint and Schematic Information for H11AA1

The footprint and schematic symbols for the following parts can be accessed using the associated links. They are available in Eagle, Altium, KiCad, OrCAD / Allegro, Pulsonix, and PADS.
Note that the 3D models for these parts can be found on the Vishay product page.

PART NUMBER	FOOTPRINT / SCHEMATIC
H11AA1	$\underline{\text { www.snapeda.com/parts/H11AA1/Vishay/view-part }}$
H11AA1-X001	$\underline{\text { www.snapeda.com/parts/H11AA1-X001/Vishay/view-part }}$
H11AA1-X007T	$\underline{w w w . s n a p e d a . c o m / p a r t s / H 11 A A 1-X 007 T / V i s h a y / v i e w-p a r t ~}$
H11AA1-X009T	$\underline{\text { www.snapeda.com/parts/H11AA1-X009T/Vishay/view-part }}$

For technical issues and product support, please contact optocoupleranswers@vishay.com.

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Transistor Output Optocouplers category:
Click to view products by Vishay manufacturer:

Other Similar products are found below :
LTV-814S-TA LTV-824HS LTV-852S 66095-001 6N136-X017T MCT6-X007 MOC8101-X017T PS2561A-1-W-A PS2561B-1-L-A PS2561L-1-V-A MRF658 IL755-1X007 ILD74-X001 ILQ615-2X017 ILQ615-3X016 LDA102S LDA110S PS2561-1-V-W-A PS2561AL-1-V-A PS2561L1-1-L-A PS2701A-1-F3-P-A PS2801-1-F3-P-A PS2911-1-L-AX CNY17-2X017 CNY17-4X001 CNY17-4X017 CNY17F1 X 007 CNY17F-2X017 CNY17F-4X001 CNY17G-1 LTV-214 LTV-702VB LTV-733S LTV-816S-TA LTV-825S TCET1113 TCET2100 4N25-X007T IL215AT ILD615-1X007 ILQ2-X007 VOS615A-2T WPPC-A11066AA WPPC-A11066AD WPPC-A11084ASS WPPCA21068AA WPPC-D11066AA WPPC-D21068ED WPPC-D410616EA WPPC-D410616ED

