

Vishay Vitramon

Surface Mount Multilayer Ceramic Chip Capacitor Solutions for High Voltage Applications

FEATURES

Excellent reliability and thermal shock performance

- High voltage breakdown compared to standard design
- RoHS COMPLIANT
- High reliable serial electrode design
- FREE GREEN
- Protective surface coating may be required to prevent surface arcing
- Polymer termination available for intensive, board flex requirements
- · Wet build process
- Reliable Noble Metal Electrode (NME) system
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

- · Input filter capacitors
- Output filter capacitors
- Snubber capacitors reduce MOSFET voltage spikes
- Filtering for switching power supplies
- For lighting and other AC applications please contact: mlcc@vishay.com

ELECTRICAL SPECIFICATIONS

COG (NPO)

GENERAL SPECIFICATION

Note

Electrical characteristics at +25 °C unless otherwise specified

Operating Temperature: -55 °C to +125 °C

Capacitance Range: 15 pF to 3.3 nF

Voltage Range: 3000 V_{DC}, 4000 V_{DC}, 5000 V_{DC}

Temperature Coefficient of Capacitance (TCC): 0 ppm/°C ± 30 ppm/°C from -55 °C to +125 °C

Dissipation Factor (DF):

0.1 % maximum at 1.0 V_{RMS} and 1 MHz for value \leq 1000 pF 0.1 % maximum at 1.0 V_{RMS} and 1 kHz for values > 1000 pF

Insulating Resistance:

at +25 °C 100 000 M Ω min. or 1000 Ω F whichever is less at +125 °C 10 000 M Ω min. or 100 Ω F whichever is less

Aging Rate: 0 % maximum per decade

Dielectric Strength Test:

applied test voltages $3000 \ V_{DC}$ - / $4000 \ V_{DC}$ - / $5000 \ V_{DC}$ -rated: $120 \ \%$ of rated voltage

X7R

GENERAL SPECIFICATION

Note

Electrical characteristics at +25 °C unless otherwise specified

Operating Temperature: -55 °C to +125 °C

Capacitance Range: 47 pF to 15 nF

Voltage Range:

 $3000 \, V_{DC}, 4000 \, V_{DC}, 5000 \, V_{DC}, 6000 \, V_{DC}, 8000 \, V_{DC}$

Temperature Coefficient of Capacitance (TCC): \pm 15 % from -55 °C to +125 °C, with 0 V_{DC} applied

Dissipation Factor (DF):

2.5 % maximum at 1.0 V_{RMS} and 1 kHz

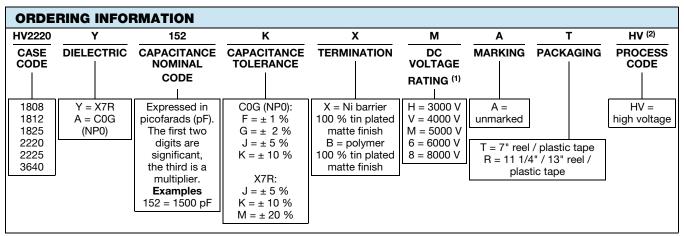
Insulating Resistance:

at +25 °C 100 000 M Ω min. or 1000 Ω F whichever is less at +125 °C 10 000 M Ω min. or 100 Ω F whichever is less

Aging Rate: 1 % maximum per decade

Dielectric Strength Test:

applied test voltages 3000 V_{DC^-} / 4000 V_{DC^-} / 5000 V_{DC^-} / 6000 V_{DC} / 8000 V_{DC^-} rated:


min. 120 % of rated voltage

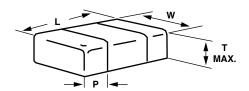
Vishay Vitramon

QUICK REFERENCE DATA										
DIELECTRIC	CASE	MAXIMUM VOLTAGE	CAPACITANCE							
DIELECTRIC	CASE	(V)	MINIMUM	MAXIMUM						
	1812	5000	15 pF	1.0 nF						
COG (NP0)	1825	5000	33 pF	2.2 nF						
COG (NPO)	2220	5000	33 pF	2.2 nF						
	2225	5000	47 pF	3.3 nF						
	1808	6000	47 pF	330 pF						
	1812	6000	150 pF	3.9 nF						
X7R	1825	6000	470 pF	10 nF						
A/n	2220	6000	470 pF	10 nF						
	2225	6000	470 pF	15 nF						
	3640	8000	1.0 nF	5.6 nF						

Note

· Detail ratings see "Selection Chart"

Notes


⁽²⁾ Process code with 2 digits has to be added

ENVIRONMENTAL STATUS									
TERMINATION CODE	TERMINATION DESCRIPTION	RoHS COMPLIANT	VISHAY GREEN						
X	Ni barrier 100 % tin plated matte finish	Yes	Yes						
В	Polymer layer, 100 % tin plated matte finish	Yes	Yes						

⁽¹⁾ DC voltage rating should not be exceeded in application. Other application factors may affect the MLCC performance. Consult for questions: mlcc@vishav.com

Vishay Vitramon

DIMENSIONS in inches (millimeters)

CASE CODE	DE STYLE LENGTH WIDTH MAXIMUM THICKNESS			TERMINA (I	TION PAD P)	
		(L)	(44)	(T)	MINIMUM	MAXIMUM
1808	HV1808	0.177 ± 0.012 (4.50 ± 0.30)	0.080 ± 0.010 (2.03 ± 0.25)	0.106 (2.70)	0.010 (0.25)	0.035 (0.90)
1812	HV1812	0.177 ± 0.012 (4.50 ± 0.30)	0.126 ± 0.008 (3.20 ± 0.20)	0.106 (2.70)	0.010 (0.25)	0.035 (0.90)
1825	HV1825	0.177 ± 0.012 (4.50 ± 0.30)	0.252 ± 0.010 (6.40 ± 0.25)	0.106 (2.70)	0.010 (0.25)	0.035 (0.90)
2220	HV2220	0.220 ± 0.010 (5.59 ± 0.25)	0.200 ± 0.010 (5.08 ± 0.25)	0.106 (2.70)	0.010 (0.25)	0.037 (0.95)
2225	HV2225	0.220 ± 0.010 (5.59 ± 0.25)	0.250 ± 0.010 (6.35 ± 0.25)	0.106 (2.70)	0.010 (0.25)	0.037 (0.95)
3640	HV3640	0.360 ± 0.015 (9.14 ± 0.38)	0.400 ± 0.015 (10.20 ± 0.38)	0.130 (3.30)	0.010 (0.25)	0.037 (0.95)

Note

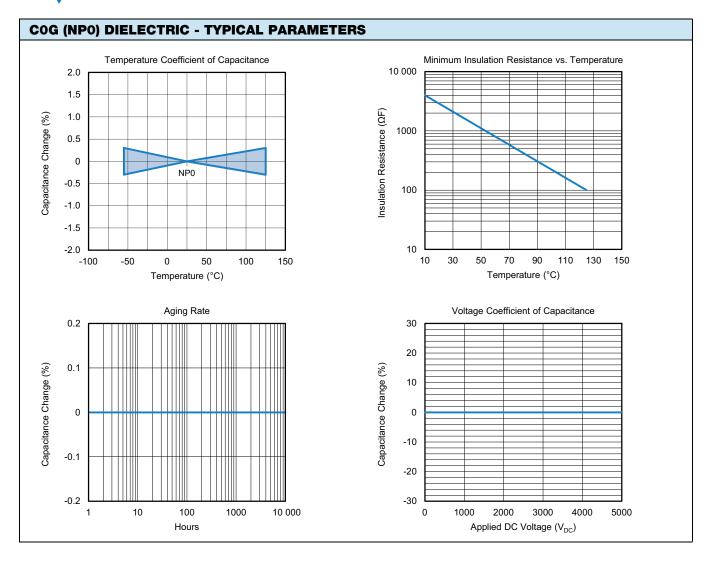
[•] Polymer layer (B termination) have increased dimensions: length 0.006" (0.15 mm)

SELECTION	SELECTION CHART															
DIELECTRIC	DIELECTRIC COG (NPO)															
STYLE		HV1812 ⁽¹⁾				HV1825 ⁽¹⁾ HV2220 ⁽¹⁾					220 ⁽¹⁾	HV2225 ⁽¹⁾				
EIA CODE			18	12		1825 2220				2225						
VOLTAGE (V	DC)	3000	4000	5000	3000	4000	5000		3000	4000	5000		3000	4000	5000	
VOLTAGE C	ODE	Н	٧	М	Н	٧	М		Н	٧	М		Н	٧	М	
CAP. CODE	CAP.															
100	10 pF															
120	12 pF															
150	15 pF	•	•	•												
180	18 pF	•	•	•												
220	22 pF	•	•	•												
270	27 pF	•	•	•												
330	33 pF	•	•	•	•	•	•		•	•	•					
390	39 pF	•	•	•	•	•	•		•	•	•					
470	47 pF	•	•	•	•	•	•		•	•	•		•	•	•	
560	56 pF	•	•	•	•	•	•		•	•	•		•	•	•	
680	68 pF	•	•	•	•	•	•		•	•	•		•	•	•	
820	82 pF	•	•	•	•	•	•		•	•	•		•	•	•	
101	100 pF	•	•	•	•	•	•		•	•	•		•	•	•	
121	120 pF	•	•	•	•	•	•		•	•	•		•	•	•	
151	150 pF	•	•	•	•	•	•		•	•	•		•	•	•	
181	180 pF	•	•	•	•	•	•		•	•	•		•	•	•	
221	220 pF	•	•	•	•	•	•		•	•	•		•	•	•	
271	270 pF	•	•		•	•	•		•	•	•		•	•	•	
331	330 pF	•			•	•	•		•	•	•		•	•	•	
391	390 pF	•			•	•	•		•	•	•		•	•	•	
471	470 pF	•			•	•	•		•	•	•		•	•	•	
561	560 pF	•			•	•	•		•	•	•		•	•	•	
681	680 pF	•			•	•			•	•			•	•	•	
821	820 pF	•			•				•				•	•	•	
102	1.0 nF	•			•				•				•	•		
122	1.2 nF				•				•				•			
152	1.5 nF				•				•				•			
182	1.8 nF				•				•				•			
222	2.2 nF				•				•				•			
272	2.7 nF												•			
332	3.3 nF												•			
392	3.9 nF															
472	4.7 nF															

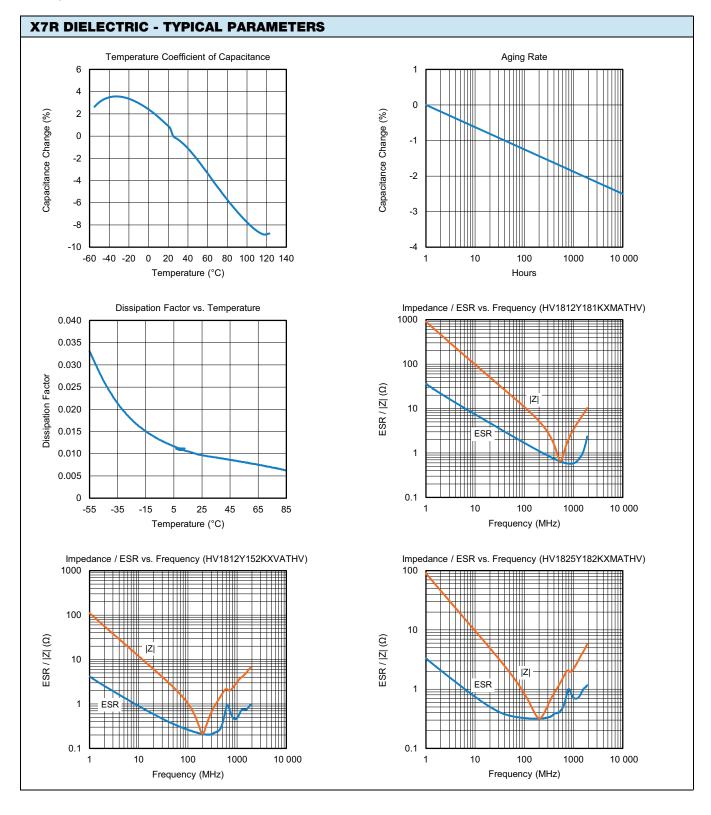
 ⁽¹⁾ See soldering recommendations within this data book, or visit: www.vishay.com/doc?45034
 (2) Rating use lower packaging quantity, see "Standard Packaging Quantities" chart

DIELECTRIC						X7R					
STYLE		HV1808 ⁽¹⁾		HV18	312 ⁽¹⁾		HV1825 ⁽¹⁾				
EIA CODE	ODE 1808			18	12		1825				
VOLTAGE (V _{DC}	<u></u>	6000	3000	4000	5000	6000	3000	4000	5000	6000	
VOLTAGE COL	DE	6	Н	V	М	6	Н	V	М	6	
CAP. CODE	CAP.										
470	47 pF	•									
560	56 pF	•									
680	68 pF	•									
820	82 pF	•									
101	100 pF	•									
121	120 pF	•									
151	150 pF	•				•					
181	180 pF	•			•	•					
221	220 pF	•		•	•	•					
271	270 pF	•		•	•	•					
331	330 pF	•		•	•	•		•	•		
391	390 pF			•	•	•		•	•		
471	470 pF			•	•	•		•	•	•	
561	560 pF		•	•	•	•		•	•	•	
681	680 pF		•	•	•	•		•	•	•	
751	750 pF					•				•	
821	820 pF		•	•	•			•	•	•	
102	1.0 nF		•	•				•	•	•	
122	1.2 nF		•	•			•	•	•	•	
152	1.5 nF		•	• (2)			•	•	•	•	
182	1.8 nF		•				•	•	•		
222	2.2 nF		•				•	•			
272	2.7 nF		• (2)				•	•			
332	3.3 nF		• (2)				•	•			
392	3.9 nF		• (2)				•				
472	4.7 nF						•				
562	5.6 nF						• (2)				
682	6.8 nF						• (2)				
822	8.2 nF						• (2)				
103	10 nF						• (2)				
123	12 nF										
153	15 nF										
183	18 nF	+								 	

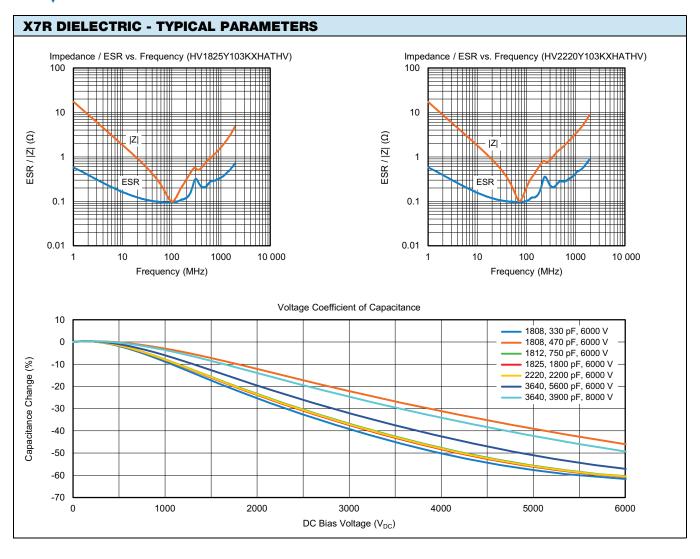
 ⁽¹⁾ See soldering recommendations within this data book, or visit: www.vishay.com/doc?45034
 (2) Rating use lower packaging quantity, see "Standard Packaging Quantities" chart

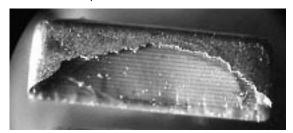

Vishay Vitramon

SELECTIO	II UIIAIII	1										
DIELECTRIC		X7R								1		
STYLE				220 ⁽¹⁾				225 ⁽¹⁾		HV3640 ⁽¹⁾		
EIA CODE			22	220			22	225		3640		
VOLTAGE (V _D	c)	3000	4000	5000	6000	3000 4000 5000 6000				6000	8000	
VOLTAGE CO	DE	Н	V	М	6	Н	V	М	6	6	8	
CAP. CODE	CAP.											
101	100 pF											
121	120 pF											
151	150 pF											
181	180 pF											
221	220 pF											
271	270 pF											
331	330 pF											
391	390 pF			•								
471	470 pF		•	•	•			•	•		•	
561	560 pF		•	•	•			•	•		•	
681	680 pF		•	•	•		•	•	•		•	
751	750 pF				•				•		•	
821	820 pF		•	•	•		•	•	•		•	
102	1.0 nF		•	•	•		•	•	•	•	•	
122	1.2 nF	•	•	•	•		•	•	•	•	•	
152	1.5 nF	•	•	•	•		•	•	•	•	•	
182	1.8 nF	•	•	•	•	•	•	•	•	•	•	
222	2.2 nF	•	•		•	•	•	•	•	•	•	
272	2.7 nF	•	•			•	•	•	•	•	•	
332	3.3 nF	•	•			•	•	•		•	•	
392	3.9 nF	•				•	•			•		
472	4.7 nF	•				•	•			•		
562	5.6 nF	• (2)				•	•			•		
682	6.8 nF	• (2)				•						
822	8.2 nF	• (2)				•						
103	10 nF	• (2)				•						
123	12 nF					•						
153	15 nF					•						
183	18 nF											


Notes

⁽¹⁾ See soldering recommendations within this data book, or visit: www.vishay.com/doc?45034


⁽²⁾ Rating use lower packaging quantity, see "Standard Packaging Quantities" chart


Vishay Vitramon

POLYMER TERMINATION

Polymer termination provides additional protection against board flexure damage by absorbing greater mechanical and thermal stresses. Components can be packaged, transported, stored and handled the same standard terminated product. Reflow soldering of MLCC does not require modification to equipment and / or process. Polymer termination greatly reduces the risk of mechanical cracking however it does not completely eliminate.


STANDARD TERMINATION

Exposed Electrodes = Electrical Short

OMD CAP PLUS POLYMER TERMINATION

No Exposed Electrodes = No Electrical Short

STANDARD PACK	STANDARD PACKAGING QUANTITIES (1)											
CASE CODE	TAPE SIZE	7" REEL QUANTITIES PACKAGING CODE "T"	11 1/4" AND 13" REEL QUANTITIES PACKAGING CODE "R"									
1808	12 mm	2000	10 000									
1812	12 mm	500 ⁽²⁾ / 1000	4000									
1825	12 mm	500 ⁽²⁾ / 1000	4000									
2220	12 mm	500 ⁽²⁾ / 1000	n/a									
2225	12 mm	500	n/a									
3640	16 mm	500	n/a									

Notes

- (1) Reference: EIA standard RS 481 "Taping of Surface Mount Components for Automatic Placement"
- (2) Lower quantity for certain ratings, see "Selection Chart"

STORAGE AND HANDLING CONDITIONS

- (1) Store the components at 5 °C to 40 °C ambient temperature and ≤ 70 % relative humidity conditions.
- (2) The product is recommended to be used within a time-frame of 2 years after shipment. Check solderability in case extended shelf life beyond the expiry date is needed.

Precautions

- a. Do not store products in an environment containing corrosive elements, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. This may cause corrosion or oxidization of the terminations, which can easily lead to poor soldering.
- b. Store products on the shelf and avoid exposure to moisture or dust.
- c. Do not expose products to excessive shock, vibration, direct sunlight and so on.

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multilayer Ceramic Capacitors MLCC - SMD/SMT category:

Click to view products by Vishay manufacturer:

Other Similar products are found below:

D55342E07B523DR-T/R NCA1206X7R103K50TRPF NCA1206X7R104K16TRPF NIN-FB391JTRF NIN-FC2R7JTRF

NMC0402NPO220J50TRPF NMC0402X5R105K6.3TRPF NMC0402X5R224K6.3TRPF NMC0402X7R103J25TRPF

NMC0402X7R153K16TRPF NMC0603NPO330G50TRPF NMC0603NPO331F50TRPF NMC0603X5R475M6.3TRPF

NMC0805NPO220J100TRPF NMC0805NPO270J50TRPF NMC0805NPO681F50TRPF NMC0805NPO820J50TRPF

NMC0805X7R224K25TRPF NMC1206X7R102K50TRPF NMC1210Y5V105Z50TRPLPF NMC-H0805X7R472K250TRPF NMC-L0402NPO7R0C50TRPF NMC-L0603NPO2R2B50TRPF NMC-Q0402NPO8R2D200TRPF C1206C101J1GAC C1608C0G2A221J

C1608X7R1E334K C2012C0G2A472J 2220J2K00562KXT KHC201E225M76N0T00 1812J2K00332KXT CCR06CG153FSV

CDR14BP471CJUR CDR31BX103AKWR CDR33BX683AKUS CGA2B2C0G1H010C CGA2B2C0G1H040C CGA2B2C0G1H050C

CGA2B2C0G1H060D CGA2B2C0G1H070D CGA2B2C0G1H120J CGA2B2C0G1H151J CGA2B2C0G1H1R5C CGA2B2C0G1H2R2C

CGA2B2C0G1H390J CGA2B2C0G1H391J CGA2B2C0G1H3R3C CGA2B2C0G1H680J CGA2B2C0G1H6R8D CGA2B2C0G1H820J