Linear Optocoupler, High Gain Stability, Wide Bandwidth

FEATURES

- Couples AC and DC signals
- 0.01 \% servo linearity
- Wide bandwidth, > 200 kHz
- High gain stability, $\pm 0.005 \% /{ }^{\circ} \mathrm{C}$ typically
- Low input-output capacitance
- Low power consumption, < 15 mW
- Isolation rated voltage $4420 \mathrm{~V}_{\mathrm{RMS}}$
- Internal insulation distance, > 0.4 mm
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- Power supply feedback voltage / current
- Medical sensor isolation
- Audio signal interfacing
- Isolated process control transducers
- Digital telephone isolation

AGENCY APPROVALS

- UL
- cUL
- DIN EN 60747-5-5 (VDE 0884-5) available with option 1
- BSI
- FIMKO
- CQC

COMPLIANT

DESCRIPTION

The IL300 linear optocoupler consists of an AIGaAs IRLED irradiating an isolated feedback and an output PIN photodiode in a bifurcated arrangement. The feedback photodiode captures a percentage of the LEDs flux and generates a control signal $\left(l_{\mathrm{P}_{1}}\right)$ that can be used to servo the LED drive current. This technique compensates for the LED's non-linear, time, and temperature characteristics. The output PIN photodiode produces an output signal (lp2) that is linearly related to the servo optical flux created by the LED.
The time and temperature stability of the input-output coupler gain (K3) is insured by using matched PIN photodiodes that accurately track the output flux of the LED.

ORDERING INFORMATION

Note
(1) Also available in tubes, do not put "T" on the end

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)				
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
INPUT				
Power dissipation		$\mathrm{P}_{\text {diss }}$	160	mW
Derate linearly from $25{ }^{\circ} \mathrm{C}$			2.13	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Forward current		I_{F}	60	mA
Surge current (pulse width < 10μ s)		$\mathrm{l}_{\text {PK }}$	250	mA
Reverse voltage		V_{R}	5	V
Thermal resistance		$\mathrm{R}_{\text {th }}$	470	K/W
Junction temperature		T_{j}	100	${ }^{\circ} \mathrm{C}$
OUTPUT				
Power dissipation		$\mathrm{P}_{\text {diss }}$	50	mW
Derate linearly from $25^{\circ} \mathrm{C}$			0.65	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Reverse voltage		V_{R}	50	V
Thermal resistance		R_{th}	1500	K/W
Junction temperature		T_{j}	100	${ }^{\circ} \mathrm{C}$
COUPLER				
Total package dissipation at $25^{\circ} \mathrm{C}$		$\mathrm{P}_{\text {tot }}$	210	mW
Derate linearly from $25^{\circ} \mathrm{C}$			2.8	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Storage temperature		$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Operating temperature		$\mathrm{T}_{\text {amb }}$	-55 to +100	${ }^{\circ} \mathrm{C}$

Note

- Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute maximum ratings for extended periods of the time can adversely affect reliability

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
INPUT (LED EMITTER)						
Forward voltage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	V_{F}	-	1.25	1.50	V
V_{F} temperature coefficient		$\Delta \mathrm{V}_{\mathrm{F}} / \Delta^{\circ} \mathrm{C}$	-	-2.2	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Reverse current	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$	I_{R}	-	1	-	$\mu \mathrm{A}$
Junction capacitance	$\mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	C_{j}	-	15	-	pF
Dynamic resistance	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	$\Delta \mathrm{V}_{\mathrm{F}} / \Delta \mathrm{l}_{\mathrm{F}}$	-	6	-	Ω
OUTPUT						
Dark current	$\mathrm{V}_{\text {det }}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~A}$	I_{D}	-	1	25	nA
Open circuit voltage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	V_{D}	-	500	-	mV
Short circuit current	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	$\mathrm{I}_{\text {SC }}$	-	120	-	$\mu \mathrm{A}$
Junction capacitance	$\mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	C_{j}	-	12	-	pF
Noise equivalent power	$\mathrm{V}_{\text {det }}=15 \mathrm{~V}$	NEP	-	4×10^{-14}	-	$\mathrm{W} / \sqrt{\mathrm{Hz}}$
COUPLER						
Input-output capacitance	$\mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		-	1	-	pF
K 1 , servo gain ($\mathrm{l}_{\mathrm{P} 1} / \mathrm{I}_{\mathrm{F}}$)	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {det }}=-15 \mathrm{~V}$	K1	0.006	0.012	0.017	
Servo photocurrent ${ }^{(1)(2)}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {det }}=-15 \mathrm{~V}$	$\mathrm{l}_{\mathrm{P} 1}$	-	120	-	$\mu \mathrm{A}$
	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {det }}=-15 \mathrm{~V}$	K2	0.006	0.012	0.017	
Forward current	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {det }}=-15 \mathrm{~V}$	$\mathrm{l}_{\mathrm{P} 2}$	-	120	-	$\mu \mathrm{A}$
K3, transfer gain (K2/K1) ${ }^{(1)(2)}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {det }}=-15 \mathrm{~V}$	K3	0.56	1	1.65	K2/K1
Transfer gain stability	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {det }}=-15 \mathrm{~V}$	$\Delta \mathrm{K} 3 / \Delta \mathrm{T}_{\mathrm{A}}$	-	± 0.005	± 0.15	\%/ ${ }^{\circ} \mathrm{C}$
Transfer gain linearity	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$ to 10 mA	$\Delta \mathrm{K} 3$	-	± 0.25	-	\%
	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$ to $10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{amb}}=0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$		-	± 0.5	-	\%

IL300

ELECTRICAL CHARACTERISTICS $\left(T_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
PHOTOCONDUCTIVE OPERATION						
Frequency response	$\mathrm{I}_{\mathrm{Fq}}=10 \mathrm{~mA}, \mathrm{MOD}= \pm 4 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=50 \Omega$	BW (-3 db)	-	200	-	kHz
Phase response at 200 kHz	$\mathrm{V}_{\text {det }}=-15 \mathrm{~V}$		-	-45	-	Deg.

Notes

- Minimum and maximum values were tested requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements
${ }^{(1)}$ Bin sorting: K3 (transfer gain) is sorted into bins that are $\pm 6 \%$, as follows:
Bin A $=0.557$ to 0.626
$\operatorname{Bin} B=0.620$ to 0.696
Bin C $=0.690$ to 0.773
Bin D $=0.765$ to 0.859
$\operatorname{Bin} E=0.851$ to 0.955
$\operatorname{Bin} F=0.945$ to 1.061
$\operatorname{Bin} G=1.051$ to 1.181
Bin $H=1.169$ to 1.311
$\operatorname{Bin} I=1.297$ to 1.456
$\operatorname{Bin} J=1.442$ to 1.618
$\mathrm{K} 3=\mathrm{K} 2 / \mathrm{K} 1 . \mathrm{K} 3$ is tested at $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {det }}=-15 \mathrm{~V}$
(2) Bin categories: All IL300s are sorted into a K3 bin, indicated by an alpha character that is marked on the part. The bins range from "A" through "J".
The IL300 is shipped in tubes of 50 each. Each tube contains only one category of K3. The category of the parts in the tube is marked on the tube label as well as on each individual part
(3) Category options: standard IL300 orders will be shipped from the categories that are available at the time of the order. Any of the ten categories may be shipped. For customers requiring a narrower selection of bins, the bins can be grouped together as follows:
IL300-DEFG: order this part number to receive categories D, E, F, G only
IL300-EF: order this part number to receive categories E, F only
IL300-E: order this part number to receive category E only

SWITCHING CHARACTERISTICS

PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Switching time	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}, \mathrm{I}_{\mathrm{Fq}}=10 \mathrm{~mA}$	t_{r}	-	1	-	$\mu \mathrm{s}$
		t_{f}	-	1	-	$\mu \mathrm{s}$
Rise time		t_{r}	-	1.75	-	$\mu \mathrm{s}$
Fall time		t_{f}	-	1.75	-	$\mu \mathrm{s}$

COMMON MODE TRANSIENT IMMUNITY

PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Common mode capacitance	$\mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	C_{CM}	-	0.5	-	pF
Common mode rejection ratio	$\mathrm{f}=60 \mathrm{~Hz}, \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega$	CMRR	-	130	-	dB

SAFETY AND INSULATION RATINGS

PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
Climatic classification	According to IEC 68 part 1		55 / 100 / 21	
Comparative tracking index		CTI	175	
Maximum rated withstanding isolation voltage	$\mathrm{t}=1 \mathrm{~min}$	$\mathrm{V}_{\text {ISO }}$	4420	$\mathrm{V}_{\text {RMS }}$
Maximum transient isolation voltage		$\mathrm{V}_{\text {IOTM }}$	10000	$V_{\text {peak }}$
Maximum repetitive peak isolation voltage		$V_{\text {IORM }}$	890	$\mathrm{V}_{\text {peak }}$
Isolation resistance	$\mathrm{V}_{\text {IO }}=500 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	R_{IO}	$\geq 10^{12}$	Ω
Isolation resistance	$\mathrm{V}_{\mathrm{IO}}=500 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=100^{\circ} \mathrm{C}$	R_{IO}	$\geq 10^{11}$	Ω
Output safety power		$\mathrm{P}_{\text {SO }}$	400	mW
Input safety current		$\mathrm{I}_{\text {S }}$	275	mA
Safety temperature		$\mathrm{T}_{\text {S }}$	175	${ }^{\circ} \mathrm{C}$
Creepage distance			≥ 7	mm
Clearance distance			≥ 7	mm
Insulation thickness		DTI	≥ 0.4	mm

Note

- As per IEC 60747-5-5, § 7.4.3.8.2, this optocoupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with the safety ratings shall be ensured by means of protective circuits

TYPICAL CHARACTERISTICS $\left(T_{\text {amb }}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

Fig. 1 - Forward Current vs. Forward Voltage

Fig. 2 - Servo Photocurrent vs. Forward Current

Fig. 3 - Normalized Photodiode Current vs. Forward Current

Fig. 4 - Servo Gain vs. Forward Current

Fig. 5 - Normalized Transfer Gain vs. Forward Current

Fig. 6 - Voltage Gain vs. Frequency (2 mA)

Vishay Semiconductors

Fig. 7 - Voltage Gain vs. Frequency

Fig. 8 - Phase Angle vs. Frequency

Fig. 9 - Common-Mode Rejection Ratio vs. Frequency

Fig. 10 - Photodiode Junction Capacitance vs. Reverse Voltage

PACKAGE DIMENSIONS (in millimeters)

i178010
Option 6

PACKAGE MARKING (example of IL300-E-X001)

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for High Linearity Optocouplers category:
Click to view products by Vishay manufacturer:

Other Similar products are found below :
LOC117 LOC110STR LOC111PTR LOC110 LOC112P HCNR200-000E HCNR201-000E HCNR201-300E HCNR201-500E HCNR200300E HCNR200-550E HCNR200-500E HCNR201-550E LOC111 LOC112 LOC112S LOC112STR LOC117P LOC110P LOC110PTR LOC110S LOC111P LOC111S LOC111STR LOC210P LOC211P LOC117S IL300 IL300-DEFG IL300-DEFG-X016 IL300-DEFG-X017 IL300-X007T IL300-EF-X007 IL300-E IL300-EF IL300-F IL300-F-X001 IL300-DEFG-X007T IL300-EF-X017T IL300-X009T IL300X007 IL300-F-X009T IL300-F-X009 IL300-F-X007 IL300-DEFG-X017T IL300-DEFG-X009T IL300-DEFG-X007 IL300-F-X017T IL300-EF-X007T IL300-DEFG-X001

