Optocoupler, Phototransistor Output (Dual, Quad Channel)

LINKS TO ADDITIONAL RESOURCES

DESCRIPTION

The ILD74, ILQ74 is an optically coupled pair with a GaAIAs infrared LED and a silicon NPN phototransistor. Signal information, including a DC level, can be transmitted by the device while maintaining a high degree of electrical isolation between input and output.
The ILD74, ILQ74 is especially for driving medium-speed logic, where it may be used to eliminate troublesome ground loop and noise problems. Also it can be used to replace relays and transformers in many digital interface applications, as well as analog applications such as CTR modulation.
The ILD74 has two isolated channels in a single DIP package; the ILQ74 has four isolated channels per package.

FEATURES

- ILD74, ILQ74 TTL compatible
- Transfer ratio, 35 \% typical
- Coupling capacitance, 0.5 pF
- Single, dual, and quad channel
- Industry standard DIP packages
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

AGENCY APPROVALS

- UL / cUL 1577
- DIN EN 60747-5-5 (VDE 0884-5), available with option 1
- CQC
- CSA 93751
- FIMKO: ILQ74 series
- FIMKO: ILD74 series

Notes

- Additional options may be possible, please contact sales office
${ }^{(1)}$ Also available in tubes, do not put " T " on the end

ILD74, ILQ74
www.vishay.com
Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)					
PARAMETER	TEST CONDITION	PART	SYMBOL	VALUE	UNIT
INPUT					
Peak reverse voltage			V_{R}	3	V
Forward continuous current			I_{F}	60	mA
Power dissipation			$\mathrm{P}_{\text {diss }}$	100	mW
Derate linearly from 55 \%				1.33	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
OUTPUT					
Collector emitter breakdown voltage			$\mathrm{BV}_{\text {CEO }}$	20	V
Emitter collector breakdown voltage			$\mathrm{BV}_{\mathrm{ECO}}$	5	V
Collector base breakdown voltage			$\mathrm{BV}_{\text {CBO }}$	70	V
Power dissipation			$\mathrm{P}_{\text {diss }}$	150	mW
Derate linearly from $25^{\circ} \mathrm{C}$				2	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
COUPLER					
Total package dissipation		ILD74	$\mathrm{P}_{\text {tot }}$	400	mW
		ILQ74	$\mathrm{P}_{\text {tot }}$	500	mW
Derate linearly from $25^{\circ} \mathrm{C}$		ILD74		5.33	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
		ILQ74		6.67	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Storage temperature			$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Operating temperature			$\mathrm{T}_{\text {amb }}$	-55 to +100	${ }^{\circ} \mathrm{C}$
Lead soldering time at $260{ }^{\circ} \mathrm{C}$				10	s

Note

- Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute maximum ratings for extended periods of the time can adversely affect reliability

PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
INPUT						
Forward voltage	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	V_{F}	-	1.3	1.5	V
Reverse current	$\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$	I_{R}	-	0.1	100	$\mu \mathrm{A}$
Capacitance	$\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}$	C_{0}	-	25	-	pF
OUTPUT						
Collector emitter breakdown voltage	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$	$\mathrm{BV}_{\text {CEO }}$	20	50	-	V
Collector emitter leakage current	$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~A}$	$\mathrm{I}_{\text {CEO }}$	-	5	500	nA
Capacitance collector emitter	$\mathrm{V}_{\mathrm{CE}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{~Hz}$	$\mathrm{C}_{\text {CE }}$	-	10	-	pF
COUPLER						
Saturation voltage, collector emitter	$\mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$	$\mathrm{V}_{\text {CEsat }}$	-	0.3	0.5	V
Resistance (input to output)		R_{IO}	-	100	-	G Ω
Capacitance (input to output)		ClO_{10}	-	0.5	-	pF

Note

- Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements

CURRENT TRANSFER RATIO $\left(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified $)$						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
DC current transfer ratio	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$	CTR $_{\mathrm{DC}}$	12.5	35	-	$\%$

SWITCHING CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified $)$						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Switching times	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}$	$\mathrm{t}_{\mathrm{on}}, \mathrm{t}_{\mathrm{off}}$	-	3	-	$\mu \mathrm{s}$

SAFETY AND INSULATION RATINGS				
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
Climatic classification	According to IEC 68 part 1		55/100/21	
Comparative tracking index		CTI	175	
Maximum rated withstanding isolation voltage	$\mathrm{t}=1 \mathrm{~min}$	$\mathrm{V}_{\text {ISO }}$	4420	$\mathrm{V}_{\text {RMS }}$
Maximum transient isolation voltage		$\mathrm{V}_{\text {IOTM }}$	10000	$\mathrm{V}_{\text {peak }}$
Maximum repetitive peak isolation voltage		VIORM	890	$V_{\text {peak }}$
Isolation resistance	$\mathrm{V}_{1 \mathrm{O}}=500 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\mathrm{R}_{1 \mathrm{O}}$	$\geq 10^{12}$	Ω
	$\mathrm{V}_{\text {IO }}=500 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=100^{\circ} \mathrm{C}$	R_{IO}	$\geq 10^{11}$	Ω
Output safety power		$\mathrm{P}_{\text {so }}$	400	mW
Input safety current		I_{S}	275	mA
Safety temperature		T_{S}	175	${ }^{\circ} \mathrm{C}$
Creepage distance			≥ 7	mm
Clearance distance			≥ 7	mm
Insulation thickness		DTI	≥ 0.4	mm

Note

- As per IEC 60747-5-5, § 7.4.3.8.2, this optocoupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with the safety ratings shall be ensured by means of protective circuits

TYPICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

Fig. 1 Forward Voltage vs. Forward Current

Fig. 1 - Normalized Non-Saturated and Saturated CTR vs. LED Current

Fig. 2 - Normalized Non-Saturated and Saturated CTR vs. LED Current

Fig. 3 - Normalized Non-Saturated and Saturated CTR vs. LED Current

Fig. 4 - Normalized Non-Saturated and Saturated CTR vs. LED Current

Fig. 5 - Collector Emitter Current vs. Temperature and LED Current

Fig. 6 - Collector Emitter Leakage Current vs.Temperature

Fig. 7 - Normalized CTR $_{\text {cb }}$ vs. LED Current and Temperature

Fig. 8 - Collector Base Photocurrent vs. LED Current

Fig. 9 - Normalized Photocurrent vs. I_{F} and Temperature

Fig. 10 - Normalized Non-Saturated h FE vs. Base Current and Temperature

Fig. 11 - Normalized Saturated h_{FE} vs. Base Current and Temperature

Fig. 12 - Propagation Delay vs. Collector Load Resistor

Vishay Semiconductors
PACKAGE DIMENSIONS in millimeters

PACKAGE MARKING

Notes

- Only options 1 and 7 reflected in the package marking
- The VDE logo is only marked on option 1 parts
- Tape and reel suffix (T) is not part of the package marking

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Transistor Output Optocouplers category:
Click to view products by Vishay manufacturer:

Other Similar products are found below :
LTV-814S-TA LTV-824HS LTV-852S 66095-001 6N136-X017T MCT6-X007 MOC8101-X017T PS2561A-1-W-A PS2561B-1-L-A PS2561L-1-V-A MRF658 IL755-1X007 ILD74-X001 ILQ615-2X017 ILQ615-3X016 LDA102S LDA110S PS2561-1-V-W-A PS2561AL-1-V-A PS2561L1-1-L-A PS2701A-1-F3-P-A PS2801-1-F3-P-A PS2911-1-L-AX CNY17-2X017 CNY17-4X001 CNY17-4X017 CNY17F1 X 007 CNY17F-2X017 CNY17F-4X001 CNY17G-1 LTV-214 LTV-702VB LTV-733S LTV-816S-TA LTV-825S TCET1113 TCET2100 4N25-X007T IL215AT ILD615-1X007 ILQ2-X007 VOS615A-2T WPPC-A11066AA WPPC-A11066AD WPPC-A11084ASS WPPCA21068AA WPPC-D11066AA WPPC-D21068ED WPPC-D410616EA WPPC-D410616ED

