IRF830A

Vishay Siliconix

Power MOSFET

TO-220AB G G N-Channel MOSEET

PRODUCT SUMMARY					
V _{DS} (V)	500				
R _{DS(on)} (Ω)	V _{GS} = 10 V	1.4			
Q _g max. (nC)	24				
Q _{gs} (nC)	6.3				
Q _{gd} (nC)	11				
Configuration	Single				

FEATURES

- Low gate charge Q_g results in simple drive requirement
- Improved gate, avalanche and dynamic dV/dt RoHS ruggedness
- Fully characterized capacitance and avalanche voltage and current
- Effective Coss specified
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

Note

* This datasheet provides information about parts that are RoHS-compliant and / or parts that are non RoHS-compliant. For example, parts with lead (Pb) terminations are not RoHS-compliant. Please see the information / tables in this datasheet for details

APPLICATIONS

- Switch mode power supply (SMPS)
- Uninterruptable power supply
- High speed power Switching
- TYPICAL SMPS TOPOLOGIES
- Two transistor forward
- Half bridge
- Full bridge

ORDERING INFORMATION	
Package	TO-220AB
Lead (Pb)-free	IRF830APbF
Lead (Pb)-free and halogen-free	IRF830APbF-BE3

ABSOLUTE MAXIMUM RATINGS (T _C	= 25 °C, unl	ess otherwis	se noted)			
PARAMETER			SYMBOL	LIMIT	UNIT	
Drain-source voltage			V _{DS}	500	Ň	
Gate-source voltage			V _{GS}	± 30	V	
Continuous dusin surrent	V at 10 V	T _C = 25 °C T _C = 100 °C		5.0		
Continuous drain current	V _{GS} at 10 V	T _C = 100 °C	I _D	3.2	А	
Pulsed drain current ^a			I _{DM}	20	1	
Linear derating factor				0.59	W/°C	
Single pulse avalanche energy ^b			E _{AS}	230	mJ	
Repetitive avalanche current ^a			I _{AR}	5.0	A	
Repetitive avalanche energy ^a			E _{AR}	7.4	mJ	
Maximum power dissipation	T _C =	25 °C	PD	74	W	
Peak diode recovery dV/dt ^c			dV/dt	5.3	V/ns	
Operating junction and storage temperature range			T _J , T _{stg}	-55 to +150	- °C	
Soldering recommendations (peak temperature) ^d	For 10 s			300		
Mounting torque	6-32 or M3 screw			10	lbf ∙ in	
Mounting torque			-	1.1	N · m	

Notes

- a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11)
- b. Starting T_J = 25 °C, L = 18 mH, R_g = 25 $\Omega,\,I_{AS}$ = 5.0 A (see fig. 12)
- c. $I_{SD} \le 5.0$ A, dI/dt ≤ 370 A/µs, $V_{DD} \le V_{DS}$, $T_J \le 150$ °C

d. 1.6 mm from case

S21-0852-Rev. D, 16-Aug-2021

www.vishay.com

Vishay Siliconix

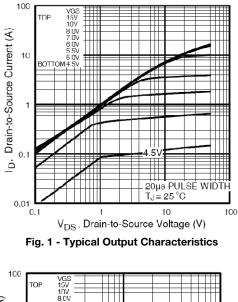
THERMAL RESISTANCE RAT	rings							
PARAMETER	SYMBOL	TYP		MAX	.		UNIT	
Maximum junction-to-ambient	R _{thJA}	-		62				
Case-to-sink, flat, greased surface	R _{thCS}	0.50)	-		°C/W		
Maximum junction-to-case (drain)	R _{thJC}	- 1.7		,				
	·							
SPECIFICATIONS ($T_J = 25 \degree C$,	unless otherw	ise noted)						
PARAMETER	SYMBOL	,		ONS	MIN.	TYP.	MAX.	UNIT
Static		I				1	1	1
Drain-source breakdown voltage	V _{DS}	V _{GS} =	0 V, I _D = 25	i0 μA	500	-	-	V
V _{DS} temperature coefficient	$\Delta V_{DS}/T_{J}$	Reference	e to 25 °C, I	a = 1 mA	-	0.60	-	V/°C
Gate-source threshold voltage	V _{GS(th)}		V _{GS} , I _D = 25		2.0	-	4.5	V
Gate-source leakage	I _{GSS}	-	_{GS} = ± 30 V	-	-	-	± 100	nA
		V _{DS} =	500 V, V _{GS}	= 0 V	-	-	25	
Zero gate voltage drain current	I _{DSS}	V _{DS} = 400 V,			-	-	250	μA
Drain-source on-state resistance	R _{DS(on)}	V _{GS} = 10 V			-	-	1.4	Ω
Forward transconductance	9 _{fs}	V _{DS} =	50 V, I _D = 3	.0 A ^b	2.8	-	-	S
Dynamic		1				•	•	1
Input capacitance	C _{iss}		$V_{oo} = 0 V$		-	620	-	
Output capacitance	C _{oss}	$V_{GS} = 0 V, V_{DS} = 25 V, f = 1.0 MHz, see fig. 5$		-	93	-		
Reverse Transfer capacitance	C _{rss}			-	4.3	-		
Output capacitance	C _{oss}	V _{GS} = 0 V; V	_{DS} = 1.0 V, 1	f = 1.0 MHz		886		pF
Output capacitance	C _{oss}	V _{GS} = 0 V; V _I	_{DS} = 400 V,	f = 1.0 MHz		27		
Effective output capacitance	C _{oss} eff.	V _{GS} = 0 V;	$V_{DS} = 0 V t$	o 400 V ^c		39		
Total gate charge	Qg				-	-	24	nC
Gate-source charge	Q _{gs}	V _{GS} = 10 V		, V _{DS} = 400 V, 6 and 13 ^b	-	-	6.3	
Gate-drain charge	Q _{gd}		see lig.	o and 15	-	-	11	
Turn-on delay time	t _{d(on)}				-	10	-	
Rise time	t _r	V _{DD} =	250 V, I _D =	5.0 A,	-	21	-	ns
Turn-off delay time	t _{d(off)}	$R_g = 14 \Omega, F$			-	21	-	
Fall time	t _f	-		-	15	-		
Gate input resistance	Rg	f = 1 MHz, open drain		1.7	-	10.7	Ω	
Drain-Source Body Diode Characteris	tics							
Continuous source-drain diode current	I _S	MOSFET symbol showing the integral reverse p - n junction diode		-	-	5.0	A	
Pulsed diode forward current ^a	I _{SM}			-	-	20		
Body diode voltage	V _{SD}	T _J = 25 °C, I _S = 5.0 A, V _{GS} = 0 V ^b		$I_{GS} = 0 V^{b}$	-	-	1.5	V
Body diode reverse recovery time	t _{rr}	-	-		-	430	650	ns
Body diode reverse recovery charge	Q _{rr}	T _J = 25 °C, I _F =	= 5.0 A, dl/d	t = 100 A/µs ^b	-	1.62	2.4	μC
Forward turn-on time	t _{on}	Intrinsic tu	rn-on time i	s negligible (tu	m-on is d	ominated	by Ls and	· ·

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11)

b. Pulse width \leq 300 µs; duty cycle \leq 2 %

c. C_{oss} eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 % to 80 % V_{DS}


2

Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

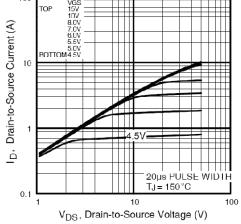


Fig. 2 - Typical Output Characteristics

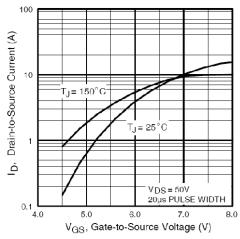


Fig. 3 - Typical Transfer Characteristics

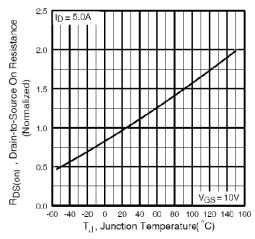


Fig. 4 - Normalized On-Resistance vs. Temperature

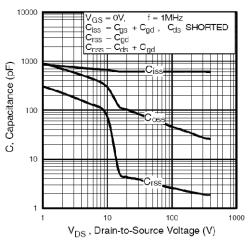


Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

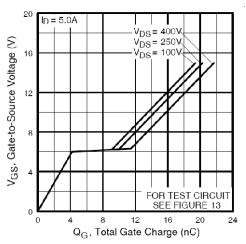


Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

IRF830A

Vishay Siliconix

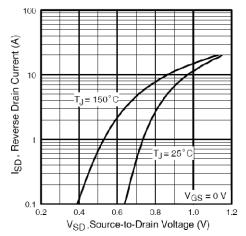


Fig. 7 - Typical Source-Drain Diode Forward Voltage

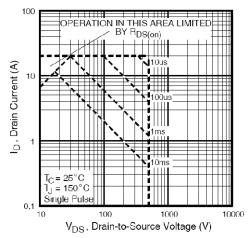


Fig. 8 - Maximum Safe Operating Area

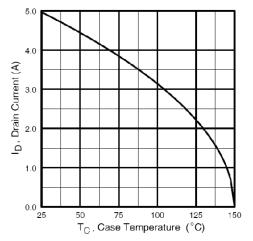


Fig. 9 - Maximum Drain Current vs. Case Temperature

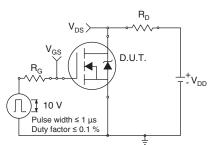


Fig. 10a - Switching Time Test Circuit

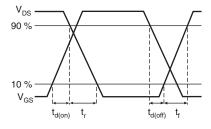


Fig. 10b - Switching Time Waveforms

S21-0852-Rev. D, 16-Aug-2021

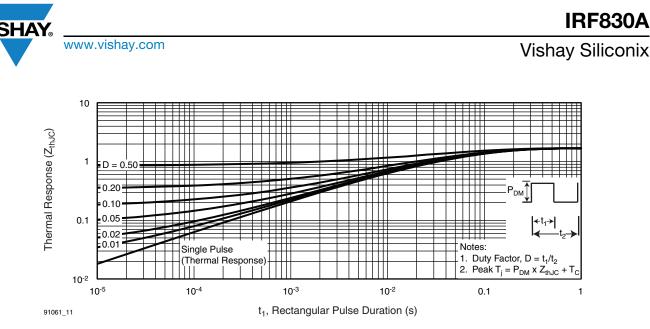


Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

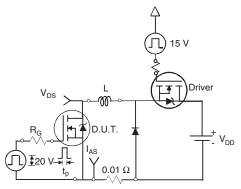


Fig. 12a - Unclamped Inductive Test Circuit

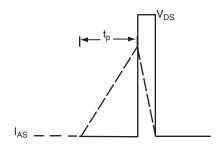


Fig. 12b - Unclamped Inductive Waveforms

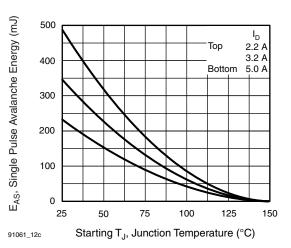
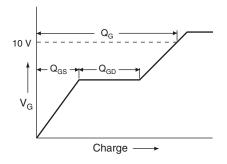
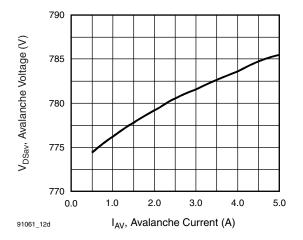
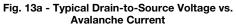


Fig. 12c - Maximum Avalanche Energy vs. Drain Current


Fig. 12d - Basic Gate Charge Waveform

IRF830A

Vishay Siliconix

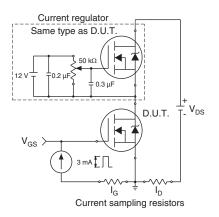
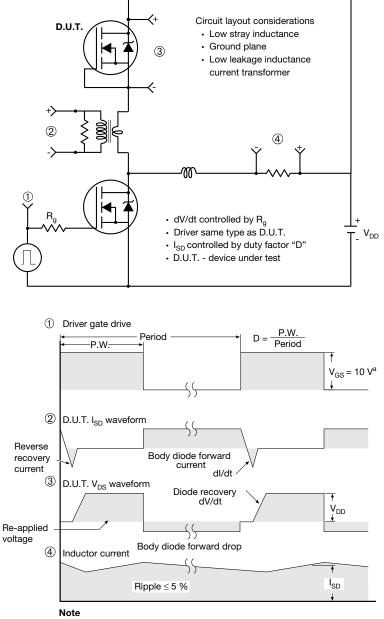
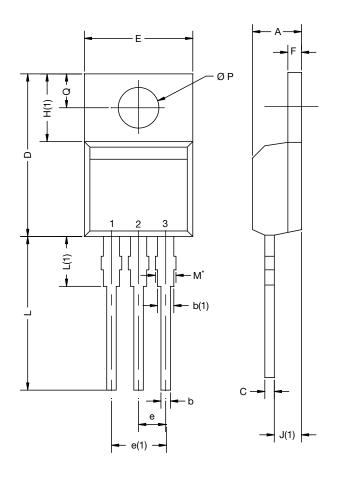



Fig. 13b - Gate Charge Test Circuit

6

Peak Diode Recovery dV/dt Test Circuit

a. $V_{GS} = 5 V$ for logic level devices


Fig. 14 - For N-Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91061.

Vishay Siliconix

TO-220-1

DIM	MILLIN	METERS	INC	HES
DIM.	MIN.	MAX.	MIN.	MAX.
А	4.24	4.65	0.167	0.183
b	0.69	1.02	0.027	0.040
b(1)	1.14	1.78	0.045	0.070
С	0.36	0.61	0.014	0.024
D	14.33	15.85	0.564	0.624
E	9.96	10.52	0.392	0.414
е	2.41	2.67	0.095	0.105
e(1)	4.88	5.28	0.192	0.208
F	1.14	1.40	0.045	0.055
H(1)	6.10	6.71	0.240	0.264
J(1)	2.41	2.92	0.095	0.115
L	13.36	14.40	0.526	0.567
L(1)	3.33	4.04	0.131	0.159
ØP	3.53	3.94	0.139	0.155
Q	2.54	3.00	0.100	0.118

Note

• M* = 0.052 inches to 0.064 inches (dimension including protrusion), heatsink hole for HVM

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Vishay manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 JANTX2N5237 2N7000 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D MIC4420CM-TR VN1206L 614234A 715780A SSM6J414TU,LF(T 751625C IPS70R2K0CEAKMA1 2SK2614(TE16L1,Q) DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE2384 NTE2969 NTE6400A IPS60R3K4CEAKMA1 DMN1006UCA6-7 DMN16M9UCA6-7 STF5N65M6 STU5N65M6 C3M0021120D DMN13M9UCA6-7 BSS340NWH6327XTSA1 IPS60R1K0PFD7SAKMA1 IPS60R360PFD7SAKMA1 IPS60R600PFD7SAKMA1 IPS60R210PFD7SAKMA1 DMN2990UFB-7B IPS60R280PFD7SAKMA1 IPD60R280PFD7SAUMA1 IPD60R360PFD7SAUMA1 SSM3K35CT,L3F IPLK60R1K0PFD7ATMA1 NTPF450N80S3Z IPLK60R1K5PFD7ATMA1 IPBE65R190CFD7AATMA1 IPB65R190CFD7AATMA1 2N7002W-G