
Vishay Siliconix

Power MOSFET

PRODUCT SUMMARY			
V _{DS} (V)	50		
R _{DS(on)} (Ω)	V _{GS} = 10 V 0.20		
Q _g (Max.) (nC)	10		
Q _{gs} (nC)	2.6		
Q _{gd} (nC)	4.8		
Configuration	Single		

FEATURES

- Low drive current
- Surface-mount
- Fast switching
- Ease of paralleling
- Excellent temperature stability
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

DESCRIPTION

The power MOSFET technology is the key to Vishay's advanced line of power MOSFET transistors. The efficient geometry and unique processing of this latest "State of the Art" design achieves: very low on-state resistance combined with high transconductance; superior reverse energy and diode recovery dV/dt capability.

The power MOSFET transistors also feature all of the well established advantages of MOSFET'S such as voltage control, very fast switching, ease of paralleling and temperature stability of the electrical parameters.

Surface mount packages enhance circuit performance by reducing stray inductances and capacitance. The DPAK (TO-252) surface-mount package brings the advantages of power MOSFET's to high volume applications where PC Board surface mounting is desirable. The surface mount option IRFR9012, SiHFR9012 is provided on 16 mm tape. The straight lead option IRFU9012, SiHFU9012 of the device is called the IPAK (TO-251).

They are well suited for applications where limited heat dissipation is required such as, computers and peripherals, telecommunication equipment, dc-to-dc converters, and a wide range of consumer products.

ORDERING INFORMATION					
Package	DPAK (TO-252)	DPAK (TO-252)	DPAK (TO-252)	DPAK (TO-252)	
Lead (Pb)-free and halogen-free	SiHFR010-GE3	SiHFR010TR-GE3	SiHFR010TRL-GE3	IRFR010PbF-BE3	
Lead (Pb)-free	IRFR010PbF	IRFR010TRPbF	IRFR010TRLPbF	IRFR010TRRPbF	

ABSOLUTE MAXIMUM RATINGS (T C	= 25 °C, unless otherwis	se noted)		
PARAMETER	SYMBOL	LIMIT	UNIT	
Drain-source voltage	V _{DS}	50	v	
Gate-source voltage	V _{GS}	± 20	v	
Continuous drain current	V_{GS} at 10 V $\frac{T_{C} = 25 \degree C}{T_{C} = 100 \degree C}$		8.2	
Continuous drain current	$T_{\rm C} = 100 ^{\circ}{\rm C}$	ID	5.2	^
Pulsed drain current ^a		I _{DM}	33	- A -
Avalanche current ^b	I _{AS}	1.5		
Linear derating factor		0.20	W/°C	
Maximum power dissipation	T _C = 25 °C	PD	25	W
Peak diode recovery dV/dt ^c		dV/dt	2.0	V/ns
Operating junction and storage temperature range		T _J , T _{stg}	-55 to +150	°C
Soldering recommendations (peak temperature) ^d	For 10 s		300	-0

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11)

b. V_{DD} = 25 V, starting T_J = 25 °C, L = 100 µH, R_g = 25 Ω

c. $I_{SD} \le 8.2$ A, dl/dt ≤ 130 A/µs, $V_{DD} \le 40$ V, $T_{J} \le 150$ °C

d. 1.6 mm from case

When mounted on 1" square PCB (FR-4 or G-10 material) e.

S21-0466-Rev. C, 17-May-2021

ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

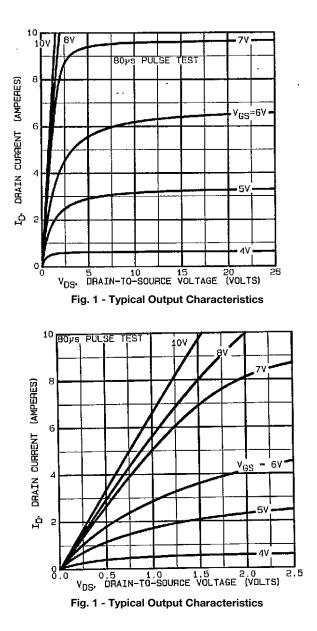
COMPLIANT

www.vishay.com

Vishay Siliconix

THERMAL RESISTANCE RAT	INGS						
PARAMETER	SYMBOL	MIN.	TYP.	MA	X.	UN	Т
Maximum junction-to-ambient	R _{thJA}	-	-	110)		
Case-to-sink	R _{thCS}	- 1.7 		- 1.7 -		°C/W	
Maximum junction-to-case (drain)	R _{thJC}			5.0)		
SPECIFICATIONS (T _J = 25 °C, u	unless otherw	vise noted)					
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT
Static		•		1		•	
Drain-source breakdown voltage	V _{DS}	V _{GS} =	= 0 V, I _D = 250 μA	50	-	-	V
Gate-source threshold voltage	V _{GS(th)}	V _{DS} =	V_{GS} , $I_D = 250 \ \mu A$	2.0	-	4.0	V
Gate-source leakage	I _{GSS}	\ \	/ _{GS} = ± 20 V	-	-	± 500	nA
		V _{DS} =	= 50 V, V _{GS} = 0 V	-	-	250	
Zero gate voltage drain current	I _{DSS}	V _{DS} = 40 V,	$V_{GS} = 0 V, T_{J} = 125$	°C -	-	1000	μA
Drain-source on-state resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 4.6 A ^b	-	0.16	0.20	Ω
Forward transconductance	9 _{fs}	V _{DS} ≥	2 50 V, I _D = 3.6 A	2.1	3.1	-	S
Dynamic					•	•	
Input capacitance	C _{iss}		$V_{GS} = 0 V$,	-	250	-	pF
Output capacitance	C _{oss}		$V_{DS} = 25 V,$	-	150	-	
Reverse transfer capacitance	C _{rss}	f = 1.0) MHz, see fig. 10	-	29	-	
Total gate charge	Qg			-	6.7	10	
Gate-source charge	Q _{gs}	V _{GS} = 10 V	I _D = 7.3 A, V _{DS} = see fig. 6 and 1		1.8	2.6	nC
Gate-drain charge	Q _{gd}		See lig. o and	-	3.2	4.8	
Turn-on delay time	t _{d(on)}			-	11	17	- ns
Rise time	t _r	- V _{DD} =	25 V, I _D = 7.3 A,	-	33	50	
Turn-off delay time	t _{d(off)}	$R_g = 24 \Omega, F$	$R_D = 3.3 \Omega$, see fig.	10 ^b -	12	18	
Fall time	t _f			-	23	35	
Internal drain inductance	L _D	6 mm (0.25"	Between lead, 6 mm (0.25") from		4.5	-	
Internal source inductance	L _S	package and center of die contact ^c			7.5	-	nH
Drain-Source Body Diode Characteristi	cs						
Continuous source-drain diode current	IS	MOSFET symbol showing the integral reverse p - n junction diode		<u></u>	-	8.2	_
Pulsed diode forward current ^a	I _{SM}			-	-	33	A
Body diode voltage	V _{SD}	$T_{J} = 25 \text{ °C}, I_{S} = 8.2 \text{ A}, V_{GS} = 0 \text{ V}^{b}$		V ^b -	-	1.6	V
Body diode reverse recovery time	t _{rr}	$T_{\rm J} = 25 ^{\circ}\text{C}, I_{\rm F} = 7.3 \text{A}, \text{dl/dt} = 100 \text{A/}\mu\text{s}^{\rm b}$		41	86	190	ns
Body diode reverse recovery charge	Q _{rr}			A/µs ⁵ 0.15	0.33	0.78	μC
Forward turn-on time	t _{on}	Intrinsic tur	rn-on time is negligil	ble (turn-on is d	ominated I	by L _S and	L _D)

Notes


a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11)

b. Pulse width $\leq 300~\mu s;~duty~cycle \leq 2~\%$

Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

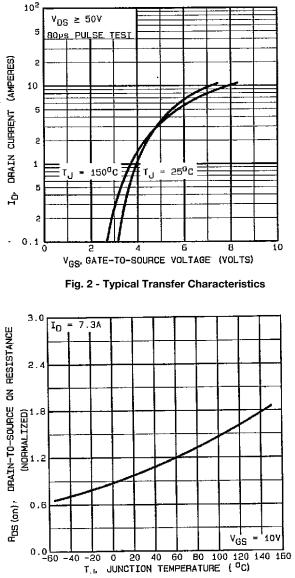


Fig. 3 - Normalized On-Resistance vs. Temperature

Vishay Siliconix

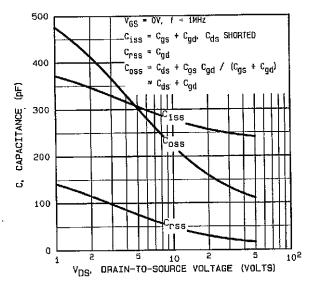


Fig. 4 - Typical Capacitance vs. Drain-to-Source Voltage

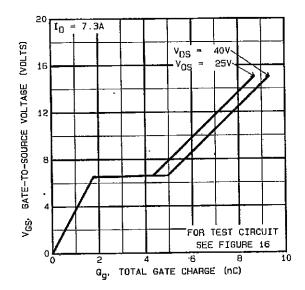


Fig. 5 - Typical Gate Charge vs. Gate-to-Source Voltage

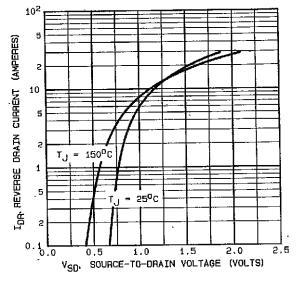
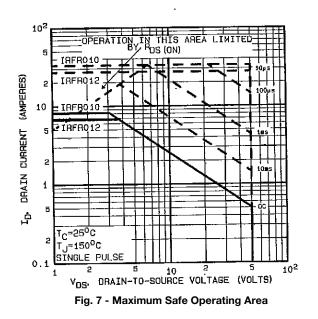



Fig. 6 - Typical Source-Drain Diode Forward Voltage

4

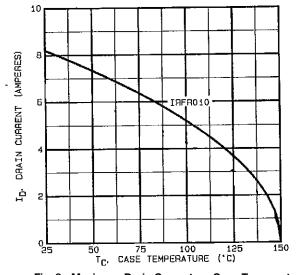
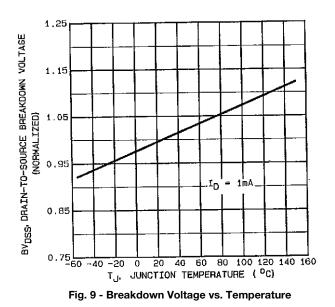



Fig. 8 - Maximum Drain Current vs. Case Temperature

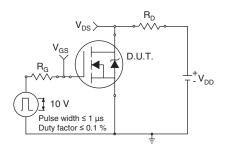


Fig. 10a - Switching Time Test Circuit

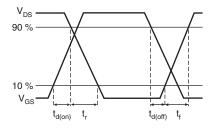
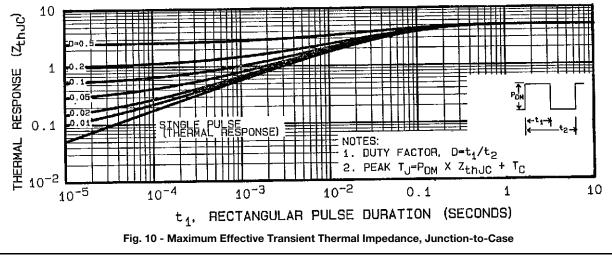



Fig. 10b - Switching Time Waveforms

S21-0466-Rev. C, 17-May-2021

5

For technical questions, contact: <u>hvm@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

IRFR010, SiHFR010

Vishay Siliconix

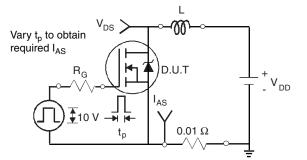


Fig. 12a - Unclamped Inductive Test Circuit

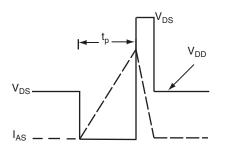
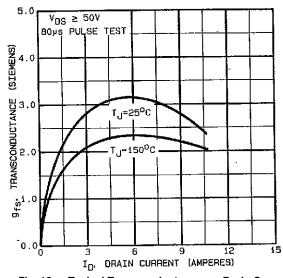
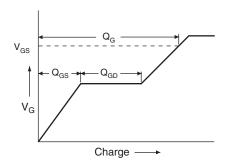
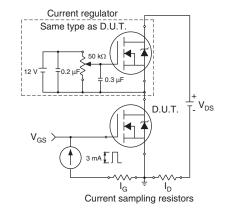
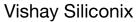




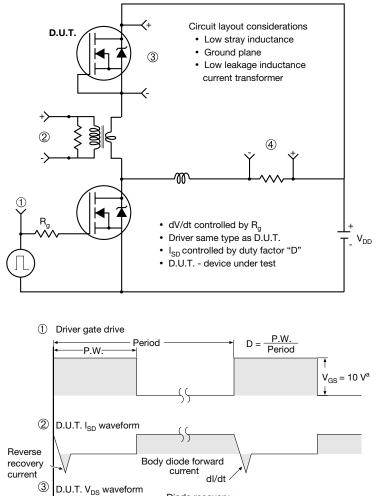
Fig. 12b - Unclamped Inductive Waveforms




Fig. 13b - Gate Charge Test Circuit

Vishay Siliconix

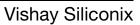
6


Document Number: 91420

For technical questions, contact: <u>hvm@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

vishay.com

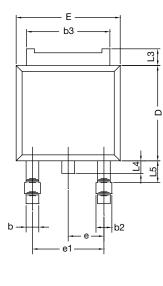
Peak Diode Recovery dV/dt Test Circuit

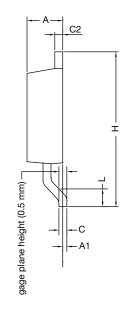


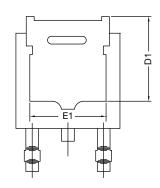
Note

a. $V_{GS} = 5$ V for logic level devices

Fig. 11 - For N-Channel


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?91420.

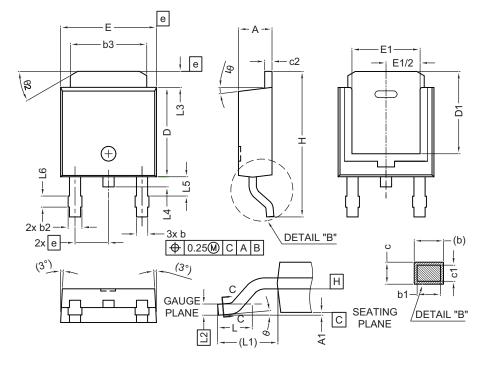




TO-252AA Case Outline

VERSION 1: FACILITY CODE = Y

	MILLIMETERS		
DIM.	MIN.	MAX.	
А	2.18	2.38	
A1	-	0.127	
b	0.64	0.88	
b2	0.76	1.14	
b3	4.95	5.46	
С	0.46	0.61	
C2	0.46	0.89	
D	5.97	6.22	
D1	4.10	-	
E	6.35	6.73	
E1	4.32	-	
Н	9.40	10.41	
е	2.28 BSC		
e1	4.56 BSC		
L	1.40	1.78	
L3	0.89	1.27	
L4	-	1.02	
L5	1.01	1.52	


Note

• Dimension L3 is for reference only

Vishay Siliconix

VERSION 2: FACILITY CODE = N

	MILLIMETERS		
DIM.	MIN.	MAX.	
A	2.18	2.39	
A1	-	0.13	
b	0.65	0.89	
b1	0.64	0.79	
b2	0.76	1.13	
b3	4.95	5.46	
С	0.46	0.61	
c1	0.41	0.56	
c2	0.46	0.60	
D	5.97	6.22	
D1	5.21	-	
E	6.35	6.73	
E1	4.32	-	
е	2.29 BSC		
Н	9.94	10.34	

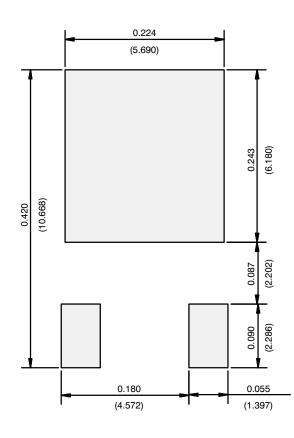
	MILLIMETERS		
DIM.	MIN.	MAX.	
L	1.50	1.78	
L1	2.74	l ref.	
L2	0.51	BSC	
L3	0.89	1.27	
L4	-	1.02	
L5	1.14	1.49	
L6	0.65	0.85	
θ	0°	10°	
θ1	0°	15°	
θ2	25°	35°	

Notes

• Dimensioning and tolerance confirm to ASME Y14.5M-1994

• All dimensions are in millimeters. Angles are in degrees

• Heat sink side flash is max. 0.8 mm


Radius on terminal is optional

ECN: E19-0649-Rev. Q, 16-Dec-2019 DWG: 5347

Vishay Siliconix

RECOMMENDED MINIMUM PADS FOR DPAK (TO-252)

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Vishay manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 JANTX2N5237 2N7000 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C IPS70R2K0CEAKMA1 BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B