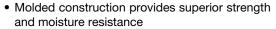


Wirewound, Surface-Mount, Molded, Shielded Inductors



STAP	STANDARD ELECTRICAL SPECIFICATIONS								
IND. (µH)	TOL.	TEST FREQ. (MHz) L & Q	Q MIN.	SRF MIN. (MHz)	DCR MAX. (Ω)	RATED DC CURRENT (mA) ⁽¹⁾			
0.10 0.12 0.15 0.18 0.22 0.33 0.39 0.47 0.56 0.68 0.82 1.0 1.2 1.5 1.8 2.2 2.7 3.3 3.9 4.7 5.6 6.8 8.2 10.0 12.0 15.0 18.0 22.0 27.0 33.0 39.0 47.0 56.0 68.0 82.0 10.0	± 20 % ± 10 % 6 % 6 % 6 % 6 % 6 % 6 % 6 % 6	L & Q 25.2 25.2 25.2 25.2 25.2 25.2 25.2 25.	30 30 30 30 30 30 30 30 30 30 30 30 30 3	460 400 390 350 310 280 240 215 205 195 165 155 140 120 90.0 80.0 67.0 61.0 56.0 50.0 40.0 32.0 32.0 32.0 32.0 15.0 12.0 13.0 14.0 12.0 13.0 14.0 15.0 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	(Ω) 0.23 0.26 0.29 0.32 0.36 0.40 0.45 0.60 0.75 0.80 0.95 1.20 0.35 0.38 0.40 0.43 0.46 0.49 0.55 0.59 0.62 0.69 0.75 0.82 0.90 1.10 1.24 1.36 1.72 1.89 2.10 2.34 2.60 2.86 3.25 3.64 4.16 5.72 6.30 6.90 7.54 8.20 9.20	552 519 491 468 441 418 394 342 306 296 271 242 447 429 418 403 390 378 357 344 336 333 306 292 279 265 252 238 227 212 202 192 183 173 164 156 147 139 130 111 105 101 96 92			
470.0 560.0 680.0 820.0 1000.0	± 10 % ± 10 % ± 10 % ± 10 % ± 10 %	0.796 0.796 0.796 0.796 0.252	40 30 40 30 30	3.3 2.8 2.6 2.2 2.0	9.20 10.50 12.00 13.50 16.00	87 82 76 72 66			

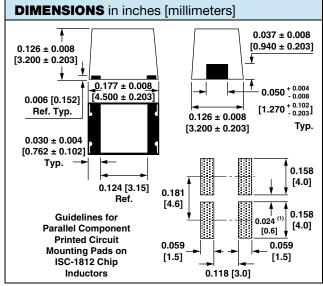
Note

FEATURES

 Tape and reel packaging for automatic handling, 2000/reel, EIA-481 ROHS COMPLIANT HALOGEN

FREE

- Compatible with vapor phase and infrared reflow soldering
- soldering
- Shielded construction minimizes coupling to other components
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

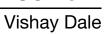

ELECTRICAL SPECIFICATIONS

Inductance range: $0.10~\mu H$ to $1000~\mu H$ Special tolerances available upon request Operating temperature: $-55~^{\circ}C$ to $+125~^{\circ}C$

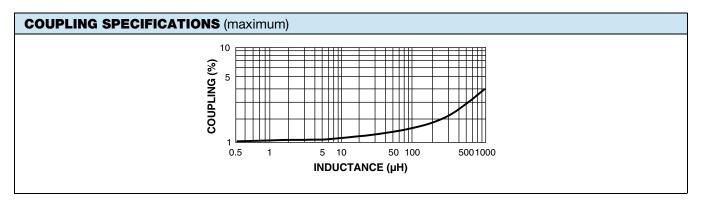
Coilform material: non-magnetic for 0.10 μH to 0.82 μH ; powdered iron for 1.0 μH to 22 μH ; ferrite for 27 μH to 1000 μH

TEST EQUIPMENT

- H/P 4342A Q meter with Vishay Dale test fixture or equivalent
- H/P 4191A RF impedance analyzer (for SRF measurements)
- Wheatstone bridge


Note

(1) Recommended minimum spacing between components


PART MARKING

- Vishay Dale
- Inductance code
- Date code

⁽¹⁾ Rated DC current based on the maximum temperature rise, not to exceed 40 °C at +85 °C ambient

DESCRI	DESCRIPTION								
ISC-1812	10 μΗ	± 10 %	ER	e3					
MODEL	INDUCTANCE VALUE	INDUCTANCE TOLERANCE	PACKAGE CODE	JEDEC® LEAD (Pb)-FREE STANDARD					

GLOBAL PART NUMBER							
PRODUCT FAMILY	1 8 1 2 SIZE	PACKAGE CODE	1 0 0 INDUCTANCE VALUE	K TOL.			

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Fixed Inductors category:

Click to view products by Vishay manufacturer:

Other Similar products are found below:

CR43NP-680KC CR54NP-820KC CR54NP-8R5MC CTX32CT-100 70F224AI MGDQ4-00004-P MHL1ECTTP18NJ MHL1JCTTD12NJ PE-51506NL PE-53601NL PE-53602NL PE-53630NL PE-53824SNLT PE-62892NL PE-92100NL PG0434.801NLT PG0936.113NLT 9310-16 PM06-2N7 PM06-39NJ A01TK 1206CS-471XJ HC2-2R2TR HC2LP-R47-R HC3-2R2-R 1206CS-151XG RCH664NP-140L RCH664NP-4R7M RCH8011NP-221L RCP1317NP-332L RCP1317NP-391L RCR1010NP-470M RCR110DNP-331L DH2280-4R7M DS1608C-106 ASPI-4020HI-R10M-T B10TJ B82477P4333M B82498B3101J000 B82498B3680J000 ELJ-RE27NJF2 1812CS-153XJ 1812CS-183XJ 1812CS-223XJ 1812LS-104XJ 1812LS-105XJ 1812LS-124XJ 1812LS-154XJ 1812LS-223XJ 1812LS-224XJ