Dual Photovoltaic MOSFET Driver Solid-State Relay

DESIGN SUPPORT TOOLS
 Available

DESCRIPTION

The LH1262CB, LH1262CAC photovoltaic MOSFET driver consists of two LEDs optically coupled to two photodiode arrays. The photodiode array provides a floating source with adequate voltage and current to drive high-power MOSFET transistors. Optical coupling provides a high I/O isolation voltage. In order to turn the MOSFET off, an external resistance (gate-to-source) is required for gate discharge.

FEATURES

- High open circuit voltage
- High short circuit current
- Isolation test voltage $5300 \mathrm{~V}_{\mathrm{RMS}}$
- Logic compatible input
- High reliability
- Material categorization: for definitions of complant compliance please see www.vishay.com/doc?99912

APPLICATIONS

- High-side driver
- Solid-state relays
- Floating power supply
- Power control
- Data acquisition
- ATE
- Isolated switching

AGENCY APPROVALS

- UL1577
- DINEN
- BSI
- CQC
- FIMKO

ORDERING INFORMATION

ABSOLUTE MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)				
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
SSR		I_{F}	50	mA
LED input ratings continuous forward current		V_{R}	5.0	V
LED input ratings reverse voltage	$\mathrm{I}_{\mathrm{R}} \leq 10 \mu \mathrm{~A}$	$\mathrm{~T}_{\mathrm{amb}}$	-40 to +85	${ }^{\circ} \mathrm{C}$
Ambient operating temperature range		$\mathrm{T}_{\mathrm{stg}}$	-40 to +150	${ }^{\circ} \mathrm{C}$
Storage temperature range		T_{S}	270	${ }^{\circ} \mathrm{C}$
Pin soldering time	$\mathrm{t}=7.0$ s max.			

Note

- Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute maximum ratings for extended periods of the time can adversely affect reliability

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}\right.$, unless otherwise specified $)$						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
LED forward voltage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{F}}$	1.15	1.26	1.45	V
Detector forward voltage	$\mathrm{I}_{\mathrm{F}}=10 \mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{F}(\mathrm{PDA})}$	-	14	-	V
Detector reverse voltage	$\mathrm{I}_{\mathrm{R}}=2.0 \mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{R}(\mathrm{PDA})}$	-	200	-	V
Open circuit voltage (pins 5, 6 or 7, 8)	$\mathrm{I}_{\mathrm{F}}=5.0 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{OC}}$	10	12.95	15	V
	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{OC}}$	-	13.45	-	V
	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{OC}}$	-	13.92	-	V
Short circuit current (pins 5, 6 or 7, 8)	$\mathrm{I}_{\mathrm{F}}=5.0 \mathrm{~mA}$	I_{SC}	1.0	1.6	6.5	$\mu \mathrm{~A}$
	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	I_{SC}	2.6	3.4	14	$\mu \mathrm{~A}$
	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$	I_{SC}	-	6.9	-	$\mu \mathrm{A}$

Note

- Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluations. Typical values are for information only and are not part of the testing requirements

SWITCHING CHARACTERISTICS ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Turn-on time	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}{ }^{(1)}$	t_{on}	-	35	-	$\mu \mathrm{s}$
Turn-off time	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}{ }^{(1)}$	$\mathrm{t}_{\text {off }}$	-	90	-	$\mu \mathrm{s}$

Note

(1) $\mathrm{f}=1.0 \mathrm{kHz}$, pulse width $=100 \mu \mathrm{~s}$, load $\left(R_{\mathrm{L}}\right)=1.0 \mathrm{M} \Omega$, 15 pF ; measured at 90% rated voltage $\left(\mathrm{t}_{\mathrm{on}}\right)$, 10% rated voltage ($\left.\mathrm{t}_{\text {off }}\right)$. Actuation speed depends upon the external $t_{\text {on }}$ and $t_{\text {off }}$ circuitry and the capacitance of the MOSFET

PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
Climatic classification	According to IEC 68 part 1		40/85 / 21	
Pollution degree	According to DIN VDE 0109		2	
Comparative tracking index	Insulation group IIIa	CTI	175	
Maximum rated withstanding isolation voltage	According to UL1577, $\mathrm{t}=1 \mathrm{~min}$	$\mathrm{V}_{\text {ISO }}$	5300	$\mathrm{V}_{\text {RMS }}$
Tested withstanding isolation voltage	According to UL1577, $\mathrm{t}=1 \mathrm{~s}$	$\mathrm{V}_{\text {ISO }}$	4420	$\mathrm{V}_{\text {RMS }}$
Maximum transient isolation voltage	According to DIN EN 60747-5-5	$\mathrm{V}_{\text {IOTM }}$	8000	$V_{\text {peak }}$
Maximum repetitive peak isolation voltage	According to DIN EN 60747-5-5	VIORM	890	$\mathrm{V}_{\text {peak }}$
Isolation resistance	$\mathrm{V}_{10}=500 \mathrm{~V}, \mathrm{~T}_{\text {amb }}=25^{\circ} \mathrm{C}$	R_{IO}	$\geq 10^{12}$	Ω
	$\mathrm{V}_{1 \mathrm{O}}=500 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=100^{\circ} \mathrm{C}$	R_{IO}	$\geq 10^{11}$	Ω
	$\mathrm{V}_{10}=500 \mathrm{~V}, \mathrm{~T}_{\text {amb }}=\mathrm{T}_{\mathrm{S}}$	R_{IO}	$\geq 10^{9}$	Ω
Output safety power		$\mathrm{P}_{\text {so }}$	700	mW
Input safety current		I_{S}	300	mA
Safety temperature		$\mathrm{T}_{\text {S }}$	175	${ }^{\circ} \mathrm{C}$
Creepage distance (DIP)	DIP-8		≥ 7	mm
Clearance distance (DIP)			≥ 7	mm
Creepage distance (SMD)	SMD-8		≥ 8	mm
Clearance distance (SMD)			≥ 8	mm
Insulation thickness		DTI	≥ 0.4	mm

Note

- As per IEC 60747-5-5, § 7.4.3.8.2, this optocoupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with the safety ratings shall be ensured by means of protective circuits

FUNCTIONAL DESCRIPTION

Figure 1 outlines the IV characteristics of the illuminated photodiode array (PDA). For operation at voltages below V_{Oc}, the PDA acts as a nearly constant current source. The actual region of operation depends upon the load.

The amount of current applied to the LED (pins 1 and 2 or 3 and 4) determines the amount of light produced for the PDA. For high temperature operation, more LED current may be required.

ilh1262cb_08
Fig. 1 - Typical Dual Form A Solid-State Relay Application
PACKAGE DIMENSIONS (in millimeters)

Fig. 2 - DIP-8 Package Drawing

Fig. 3 - SMD-8 Package Drawing

PACKAGE MARKING (example)

Fig. 4 - LH1262

Notes

- VDE logo is only marked on option 1 parts
- Tape and reel suffix (T) is not part of the package marking

SOLDER PROFILES

Fig. 5 - Lead (Pb)-free Reflow Solder Profile According to J-STD-020 for SMD Devices

Fig. 6 - Wave Soldering Double Wave Profile According to J-STD-020 for DIP Devices

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for MOSFET Output Optocouplers category:
Click to view products by Vishay manufacturer:
Other Similar products are found below :
TLP598GAF TLP4026G(F) TLP4176A(F TLP3147(F TLP3146(F TLP4590A(D4,F TLP4590A(D4LF5,F TLP4590A(D4LF1,F
TLP4590A(LF1,F TLP4590AF(LF4,F H11AV1XSM LTV-817-L LTV-817M-D LTV-817S-TA1-L TIL111 TIL191 MCT6XSM
TLP170G(F) TLP227GA-2(TP1,F) TLP797J(F) 4N35X 4N35XSM ILD1XSM ILQ2X IS357A ISP521-1XSM ISP521-4XSM ISP620-
1XSM ISP621-4X ISP621-4XSM SFH617A-3XSM SFH620A-3X CNY17-2-L CNY17-4-L TIL111XSM TIL193 TIL199 CNY17-4X
CNY17-1X IS355 TLP209D(F) TLP3544(F) TLP592A(F) TLP521-1X TLP3546(F) TLP3543(F) CNY17F-3X ISP847XSM ISP844XSM ISP827X

