## 1 Form A Solid-State Relay



## DESCRIPTION

The LH1546AD (4 pin DIP) is robust, ideal for telecom and ground fault applications. It is an SPST normally open switch (1 form A) that replaces electromechanical relays in many applications. It is constructed using a GaAs LED for actuation control and an integrated monolithic die for the switch output. The die, fabricated in a high-voltage dielectrically isolated BCDMOS technology, is comprised of a photodiode array, switch control circuitry and MOSFET switches. In addition, it employs current-limiting circuitry which meets lightning surge testing as per ANSI/TIA-968-B and other regulatory voltage surge requirements when overvoltage protection is provided.

## FEATURES

- Current limit protection
- Isolation test voltage $5300 \mathrm{~V}_{\mathrm{RMS}}$
- Typical RoN $28 \Omega$
- Load voltage 350 V
- Load current 120 mA
- High surge capability
- Clean bounce free switching
- Low power consumption
- High reliability monolithic receptor
- SMD lead available on tape and reel
- Compliant to RoHS Directive 2002/95/EC and in accordance to WEEE 2002/96/EC


## APPLICATIONS

- General telecom switching
- On/off hook control
- Ring relay
- Dial pulse
- Ground start
- Ground fault protection
- Instrumentation
- Industrial controls

Note

- See "solid-state relays" (application note 56)


## AGENCY APPROVALS

UL1577: file no. E52744 system code H, double protection
BSI/BABT: certification no. 7980


| ABSOLUTE MAXIMUM RATINGS ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| PARAMETER | TEST CONDITION | SYMBOL | VALUE | UNIT |
| INPUT |  |  |  |  |
| LED continuous forward current |  | $\mathrm{I}_{\mathrm{F}}$ | 50 | mA |
| LED reverse voltage | $\mathrm{I}_{\mathrm{R}} \leq 10 \mu \mathrm{~A}$ | $\mathrm{V}_{\mathrm{R}}$ | 8 | V |
| OUTPUT |  |  |  |  |
| DC or peak AC load voltage | L L $\leq 50 \mu \mathrm{~A}$ | $\mathrm{V}_{\mathrm{L}}$ | 350 | V |
| Continuous DC load current at $25^{\circ} \mathrm{C}$ |  | $\mathrm{I}_{\mathrm{L}}$ | 120 | mA |
| SSR |  |  |  |  |
| SSR output power dissipation (continuous) |  | $\mathrm{P}_{\text {diss }}$ | 550 | mW |
| Ambient temperature range |  | $\mathrm{T}_{\text {amb }}$ | -40 to +85 | ${ }^{\circ} \mathrm{C}$ |
| Storage temperature range |  | $\mathrm{T}_{\text {stg }}$ | -40 to +150 | ${ }^{\circ} \mathrm{C}$ |
| Soldering temperature ${ }^{(1)}$ | $\mathrm{t}=10 \mathrm{~s}$ max. | $\mathrm{T}_{\text {sld }}$ | 260 | ${ }^{\circ} \mathrm{C}$ |
| Isolation test voltage | $\mathrm{t}=1 \mathrm{~s}$ | $\mathrm{V}_{\text {ISO }}$ | 5300 | $\mathrm{V}_{\text {RMS }}$ |
| Isolation resistance | $\mathrm{V}_{10}=500 \mathrm{~V}, \mathrm{~T}_{\text {amb }}=25^{\circ} \mathrm{C}$ | $\mathrm{R}_{10}$ | $\geq 10^{12}$ | $\Omega$ |
|  | $\mathrm{V}_{\text {IO }}=500 \mathrm{~V}, \mathrm{~T}_{\text {amb }}=100^{\circ} \mathrm{C}$ | $\mathrm{R}_{10}$ | $\geq 10^{11}$ | $\Omega$ |

## Notes

- Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute maximum ratings for extended periods of the time can adversely affect reliability.
${ }^{(1)}$ Refer to reflow profile for soldering conditions for surface mounted devices (SMD). Refer to wave profile for soldering conditions for through hole devices (DIP).

| ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | TEST CONDITION | SYMBOL | MIN. | TYP. | MAX. | UNIT |
| INPUT |  |  |  |  |  |  |
| LED forward current, switch turn-on | $\mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}, \mathrm{t}=10 \mathrm{~ms}$ | $\mathrm{I}_{\text {Fon }}$ |  | 1.7 | 3 | mA |
| LED forward current, switch turn-off | $\mathrm{V}_{\mathrm{L}}= \pm 300 \mathrm{~V}$ | $\mathrm{I}_{\text {Foff }}$ | 0.2 | 1.6 |  | mA |
| LED forward voltage | $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ | $\mathrm{V}_{\mathrm{F}}$ | 1.15 | 1.2 | 1.45 | V |
| OUTPUT |  |  |  |  |  |  |
| On-resistance, AC/DC: pin 3 ( $\pm$ to 4 ( $\pm$ ) | $\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{L}}=50 \mathrm{~mA}$ | Ron |  | 28 | 35 | $\Omega$ |
| Off-resistance | $\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}}= \pm 100 \mathrm{~V}$ | R ${ }_{\text {OFF }}$ | 0.5 | 300 |  | G $\Omega$ |
| Off-state leakage current | $\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}}= \pm 100 \mathrm{~V}$ | $\mathrm{I}_{0}$ |  | 0.32 | 200 | nA |
| Output capacitance pin 3 to 4 | $\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}}=1 \mathrm{~V}$ | $\mathrm{C}_{0}$ |  | 55 |  | pF |
|  |  | $\mathrm{C}_{0}$ |  | 10 |  | pF |
| TRANSFER |  |  |  |  |  |  |
| Capacitance (input to output) | $\mathrm{V}_{\text {ISO }}=1 \mathrm{~V}$ | $\mathrm{ClO}_{1}$ |  | 0.5 |  | pF |

## Note

- Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluations. Typical values are for information only and are not part of the testing requirements.


## SWITCHING CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

| PARAMETER | TEST CONDITION | SYMBOL | MIN. | TYP. | MAX. |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Turn-on time | $\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{L}}=50 \mathrm{~mA}$ | $\mathrm{t}_{\mathrm{on}}$ |  | 2 | 3 |
| Turn-off time | $\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{L}}=50 \mathrm{~mA}$ | $\mathrm{t}_{\mathrm{off}}$ |  | ms |  |

TYPICAL CHARACTERISTICS $\left(T_{\text {amb }}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)


Fig. 1 - Recommended Operating Conditions


Fig. 2 - LED Voltage vs. Temperature


Fig. 3 - LED Current for Switch Turn-on vs. Temperature


Fig. $4-$ CTR $_{\text {CB }}$ vs. LED Current


Fig. 5 - Switch Capacitance vs. Applied Voltage


Fig. 6 - Leakage Current vs. Applied Voltage


Fig. 7 - Turn-on Time vs. Temperature


Fig. 8 - Turn-off Time vs. Temperature

ilh1546ad_09 LED Forward Current (mA)


Fig. 10 - Turn-off Time vs. LED Current

Fig. 9 - Turn-on Time vs. LED Current

## PACKAGE DIMENSIONS in millimeters



PACKAGE MARKING (example)

## Note

- Tape and reel suffix (TR) is not part of the package marking.


## Footprint and Schematic Information for LH1546

The footprint and schematic symbols for the following parts can be accessed using the associated links. They are available in Eagle, Altium, KiCad, OrCAD / Allegro, Pulsonix, and PADS.
Note that the 3D models for these parts can be found on the Vishay product page.

| PART NUMBER | FOOTPRINT / SCHEMATIC |
| :--- | :---: |
| LH1546AAB | www.snapeda.com/parts/LH1546AAB/Vishay/view-part |
| LH1546AABTR | $\underline{w w w . s n a p e d a . c o m / p a r t s / L H 1546 A A B T R / V i s h a y / v i e w-p a r t ~}$ |
| LH1546AD | $\underline{w w w . s n a p e d a . c o m / p a r t s / L H 1546 A D / V i s h a y / v i e w-p a r t ~}$ |
| LH1546ADF | $\underline{w w w . s n a p e d a . c o m / p a r t s / L H 1546 A D F / V i s h a y / v i e w-p a r t ~}$ |
| LH1546ADFTR | $\underline{w w w . s n a p e d a . c o m / p a r t s / L H 1546 A D F T R / V i s h a y / v i e w-p a r t ~}$ |
| LH1546AEF | $\underline{w w w . s n a p e d a . c o m / p a r t s / L H 1546 A E F / V i s h a y / v i e w-p a r t ~}$ |
| LH1546AEFT2 | $\underline{w w w . s n a p e d a . c o m / p a r t s / L H 1546 A E F T 2 / V i s h a y / v i e w-p a r t ~}$ |
| LH1546AEFTR | $\underline{w w w . s n a p e d a . c o m / p a r t s / L H 1546 A E F T R / V i s h a y / v i e w-p a r t ~}$ |
| LH1546AT | $\underline{w w . s n a p e d a . c o m / p a r t s / L H 1546 A T / V i s h a y / v i e w-p a r t ~}$ |

For technical issues and product support, please contact optocoupleranswers@vishay.com.


## Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Solid State Relays - PCB Mount category:
Click to view products by Vishay manufacturer:
Other Similar products are found below :
M86F-2W M90F-2Y G2-1A07-ST G2-1A07-TT G2-1B02-TT G2-DA06-ST 923812OCAS PLA134S DS11-1005 AQV212J AQY412EHAJ EFR1200480A150 901-7 LCA220 LCB110S 1618400-5 SR75-1ST AQH2213AJ AQV112KLJ AQV212AJ AQV212SXJ AQV238AD01 AQW414TS AQY221N2SYD01 AQY221R2VJ AQY275AXJ AQY414SXE01 G2-1A02-ST G2-1A03-ST G2-1A03-TT G2-1A05-ST G2-1A06-TT G2-1A23-TT G2-1B01-ST G2-1B01-TT G2-1B02-ST G2-DA03-ST G2-DA03-TT G2-DA06-TT CPC1333GR 3-1617776-2 CTA2425 TLP3131(F) LBA110S LBB110S LCA110LSTR LCB126S WPPM-0626D WPPM-3526D WPPM-3588D

