LTO 100

Power Resistor Thick Film Technology

FEATURES

- 100 W at $25^{\circ} \mathrm{C}$ case temperature heatsink mounted
- Direct mounting ceramic on heatsink
- Broad resistance range: 0.015Ω to $1 \mathrm{M} \Omega$
$\underset{\sim}{\sim}$
AUTOMOTIVE

RoHS COMPLIANT

- Non inductive
- TO-247 package: compact and easy to mount
- AEC-Q200 qualified
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912
click logo to get started

Models
Available
LTO series are the extension of RTO types. We used the direct ceramic mounting design (no metal tab) of our RCH power resistors applied to semiconductor packages.

DIMENSIONS in millimeters

Note

- Tolerances unless stated: $\pm 0.3 \mathrm{~mm}$

STANDARD ELECTRICAL SPECIFICATIONS

MODEL	SIZE	RESISTANCE RANGE Ω	RATED POWER $\boldsymbol{P}_{\mathbf{2 5}}{ }^{\circ} \mathbf{C}$	LIMITING ELEMENT VOLTAGE $\mathbf{U}_{\mathbf{L}}$ \mathbf{V}	TOLERANCE $\pm \%$	TEMPERATURE COEFFIIIENT $\pm \mathbf{~ P p m} /{ }^{\circ} \mathbf{C}$	CRITICAL RESISTANCE Ω
LTO 100	TO- 247	0.015 to 1 M	100	500	$1,2,5,10$	$200,350,900$	2.5 K

MECHANICAL SPECIFICATIONS	
Mechanical Protection	Molded
Resistive Element	Thick film
Substrate	Alumina
Connections	Tinned copper
Weight	3.5 g max.
Mounting Torqure	1 Nm

ENVIRONMENTAL SPECIFICATIONS	
Temperature Range	$-55^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Climatic Category	$55 / 175 / 56$
Flammability	IEC $60695-11-5$ 2 applications $30 ~ s$ separated by 60 s

PERFORMANCE		
TESTS	CONDITIONS	REQUIREMENTS
Momentary Overload	$\begin{aligned} & \mathrm{EN} 60115-1 \\ & 1.5 \mathrm{Pr} / 5 \mathrm{~s} \\ & U_{\mathrm{S}}<1.5 U_{\mathrm{L}} \end{aligned}$	$\pm(0.5 \%+0.005 \Omega)$
Load Life	$\begin{gathered} \text { EN } 60115-1 \\ 1000 \mathrm{~h} \mathrm{Pr} \mathrm{at}+25^{\circ} \mathrm{C} \end{gathered}$	$\pm(1 \%+0.005 \Omega)$
High Temperature Exposure	AEC-Q200 REV D conditions: MIL-STD-202 method 108 $1000 \mathrm{~h},+175^{\circ} \mathrm{C}$, unpowered	$\pm(0.25 \%+0.005 \Omega)$
Temperature Cycling	AEC-Q200 REV D conditions: JESD22 method JA-104 1000 cycles, $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ dwell time - 15 min	$\pm(1 \%+0.005 \Omega)$
Biased Humidity	AEC-Q200 REV D conditions: MIL-STD-202 method 103 $1000 \mathrm{~h}, 85^{\circ} \mathrm{C}, 85$ \% RH	$\pm(1 \%+0.005 \Omega)$
Operational Life	AEC-Q200 REV D conditions: MIL-STD-202 method 108 $2000 \mathrm{~h}, 90 / 30$, powered, $+125^{\circ} \mathrm{C}$	$\pm(1 \%+0.005 \Omega)$
ESD Human Body Model	AEC-Q200 REV D conditions: AEC-Q200-002 $25 \mathrm{kV}_{\mathrm{AD}}$	$\pm(0.5 \%+0.005 \Omega)$
Vibration	AEC-Q200 REV D conditions: MIL-STD-202 method 204 5 g's for $20 \mathrm{~min}, 12$ cycles test from 10 Hz to 2000 Hz	$\pm(0.5 \%+0.005 \Omega)$
Mechanical Shock	AEC-Q200 REV D conditions: MIL-STD-202 method 213 100 g 's, $6 \mathrm{~ms}, 3.75 \mathrm{~m} / \mathrm{s}$ 3 shocks/direction	$\pm(0.5 \%+0.005 \Omega)$
Terminal Strength	AEC-Q200 REV D conditions: AEC-Q200-006 $2 \mathrm{kgf}, 60 \mathrm{sec}$	$\pm(0.25 \%+0.01 \Omega)$

SPECIAL FEATURES				
Resistance Values	≥ 0.015	≥ 0.1	>20	
Tolerances	$\pm 900 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 1 \% \mathrm{at} \pm 10 \%$		
Typical Temperature Coefficient $\left(-55{ }^{\circ}\right.$ to $\left.+175{ }^{\circ} \mathrm{C}\right)$	$\pm 350 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$		

CHOICE OF THE HEATSINK

The user must choose according to the working conditions of the component (power, room temperature). Maximum working temperature must not exceed $175^{\circ} \mathrm{C}$. The dissipated power is simply calculated by the following ratio:

$$
P=\frac{\Delta T}{\left[R_{T H ~(j-c)}\right]+\left[R_{T H ~(c-h)}\right]+\left[R_{T H ~(h-a)}\right]}
$$

P: \quad Expressed in W
$\Delta \mathrm{T}$: Difference between maximum working temperature and room temperature
$\mathrm{R}_{\mathrm{TH}(\mathrm{j}-\mathrm{c})}$: Thermal resistance value measured between resistive layer and outer side of the resistor. It is the thermal resistance of the component.
$\mathrm{R}_{\mathrm{TH}(\mathrm{c}-\mathrm{h}) \text { : Thermal resistance value measured between outer side of the resistor and upper side of the heatsink. This is the thermal resistance }}$ of the interface (grease, thermal pad), and the quality of the fastening device.
$R_{T H}(\mathrm{~h}-\mathrm{a})$: Thermal resistance of the heatsink.

Example:

$\mathrm{R}_{T H(c-h)}+\mathrm{R}_{T H(h-a)}$ for LTO 100 power rating 10 W at ambient temperature $+25^{\circ} \mathrm{C}$
Thermal resistance $\mathrm{R}_{\mathrm{TH}(\mathrm{j} ~-~ c)}: 1.5^{\circ} \mathrm{C} / \mathrm{W}$
Considering equation (1) we have:

$$
\begin{aligned}
& \Delta \mathrm{T}=175^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}=150^{\circ} \mathrm{C} \\
& \mathrm{R}_{\text {TH }(\mathrm{j}-\mathrm{c})}+\mathrm{R}_{T H(\mathrm{c}-\mathrm{h})}+\mathrm{R}_{T H}(\mathrm{~h}-\mathrm{a})=\frac{\Delta \mathrm{T}}{\mathrm{P}}=\frac{150}{10}=15^{\circ} \mathrm{C} / \mathrm{W} \\
& \mathrm{R}_{T H}(\mathrm{c}-\mathrm{h})+\mathrm{R}_{\text {TH }(\mathrm{h}-\mathrm{a})}=15^{\circ} \mathrm{C} / \mathrm{W}-1.5^{\circ} \mathrm{C} / \mathrm{W}=13.5^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
$$

with a thermal grease $\mathrm{R}_{\mathrm{TH}(\mathrm{c}-\mathrm{h})}=1^{\circ} \mathrm{C} / \mathrm{W}$, we need a heatsink with $\mathrm{R}_{\mathrm{TH}(\mathrm{h}-\mathrm{a})}=12.5^{\circ} \mathrm{C} / \mathrm{W}$.

OVERLOADS

In any case the applied voltage must be lower than the maximum overload voltage of 750 V .
The values indicated on the graph below are applicable to resistors in air or mounted onto a heatsink.

ENERGY CURVE

POWER CURVE

POWER RATING

The temperature of the case should be maintained within the limits specified.
To improve the thermal conductivity, surfaces in contact should be coated with a silicone grease and the torque applied on the screw for tightening should be around 1 Nm .

PACKAGING

Tube of 30 units

MARKING

Model, style, resistance value (in Ω), tolerance (in \%), manufacturing date, Vishay Sfernice trademark.

LTO 100

ORDERING INFORMATION							
LTO	100	F	$2.7 \mathrm{k} \Omega$	± 1 \%	xxx	TU30	e3
MODEL	STYLE	CONNECTIONS	RESISTANCE VALUE	TOLERANCE	CUSTOM DESIGN	PACKAGING	LEAD (Pb)-FREE
				$\begin{aligned} & \pm 1 \% \\ & \pm 2 \% \\ & \pm 5 \% \\ & \pm 10 \% \end{aligned}$	Optional on request: special TCR, shape etc.		

GLOBAL PART NUMBER INFORMATION

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Thick Film Resistors - Through Hole category:

Click to view products by Vishay manufacturer:

Other Similar products are found below :

M8340104M4701GCD03	M8340105K3300GGD03	M8340105K3922FGD03	M8340106K1002JCD03	M8340107K1002GGD03
M8340107K1152FGD03	M8340107K2701GCD03	M8340107M2002GCD03	M8340108K1000GCD03	M8340108K5601GCD03
M8340108M2203GCD03	M8340109K1002JCD03	M8340109K1003GCD03	M8340109K5101GGD03	FHV05010M0FKRB MOX-2-
125005F MP850-3.00-1	hte24511kf SM-SP093	ARC3.11 2M J A M	05K1001GCD03 M83	K3002GGD03
M8340105M1002JGD03	M8340107K2001GGD03	M8340107K4701GGD03	M8340107K5101GGD03	M8340107K5600GGD03
M8340108K4990FGD03	M8340108K49R9FGD03	M8340108M10R0GGD03	M8340109K2202GGD03	M8340109K5601GCD03 MOX-
GRD-001 MOX-SP020	MOX-SP025E M8340107	2001GCD03 M834010	4701 GBD 04 M834010	1002GBD04
M8340102K1002GAD04	M8340109K2002GGD03	M8340108K22R0GGD03	M8340107M5100GGD03	OE1305 WMHP100-R22J
M8340104K39R2FCD03	M8340106MA012JHD03	M8340107K1003GGD03	MS126-9.09K-0.1\% MS1	26-249K-0.1\% MS-221-82R5

