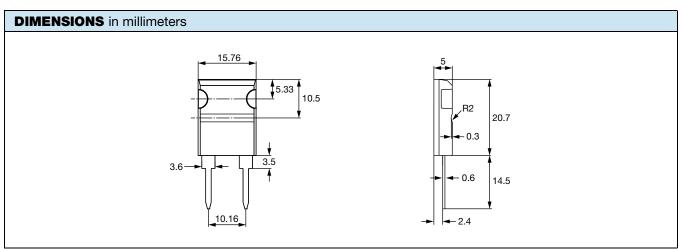


Clip Mount Power Resistor Thick Film Technology


LTO150 are the extension of LTO series. The component is used in direct contact with heatsink. Fixation done by clip.

FEATURES

 150 W at 45 °C case temperature heatsink mounted

- Direct mounting ceramic on heatsink
- Broad resistance range: 0.03 Ω to 1.3 M Ω
- Non inductive
- TO-247 package: compact and easy to mount
- Designed for clip mounting
- UL 94 V-0 material used Compliant with EN45545-2
- AEC-Q200 qualified
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

Note

• Tolerances unless stated: ± 0.3 mm

STANDARD ELECTRICAL SPECIFICATIONS							
MODEL	SIZE	RESISTANCE RANGE Ω	RATED POWER P _{25 °C} W	LIMITING ELEMENT VOLTAGE U _L V	TOLERANCE ± %	TEMPERATURE COEFFICIENT ± ppm/°C	$\begin{array}{c} \textbf{CRITICAL} \\ \textbf{RESISTANCE} \\ \Omega \end{array}$
LTO 150	TO-247	0.03 to 1.3M	150	500	1, 2, 5, 10	200, 350, 900	1.66K

MECHANICAL SPECIFICATIONS			
Mechanical Protection	Molded		
Resistive Element	Thick film		
Substrate	Alumina		
Connections	Tinned copper		
Weight	4 g max.		
Clip Assembly Force	60 N to 110 N		

ENVIRONMENTAL SPECIFICATIONS				
Temperature Range	-55 °C to +175 °C			
Climatic Category	55 / 175 / 56			
Flammability	IEC 60695-11-5 2 applications 30 s separated by 60 s			

TECHNICAL SPECIFICATIONS		
Dissipation and Associated	Onto a heatsink + clip	
Power Rating and Thermal Resistance of the Component	150 W at +45 °C (case temp.) R _{TH (j - c)} : 0.87 °C/W Free air: 4.5 W at +25 °C	
Temperature Coefficient	See Performance table ± 200 ppm/°C	
Dielectric Strength IEC 60115-1	3000 V _{RMS} - 1 min 10 mA max.	
Insulation Resistance	$\geq 10^4 \ \text{M}\Omega$	
Inductance	≤ 0.1 µH	

Revision: 15-Feb-18 1 Document Number: 50071

Vishay Sfernice

PERFORMANCE					
TESTS	CONDITIONS	REQUIREMENTS			
Momentary Overload	IEC 60115-1 1.5 Pr/5 s U _S < 1.5 U _L	± (0.5 % + 0.005 Ω)			
Load Life	IEC 60115-1 1000 h Pr (free air) at +25 °C 90/30	$\pm~(1~\%~+~0.005~\Omega)$			
High Temperature Exposure	AEC-Q200 REV D conditions: MIL-STD-202 method 108 1000 h, +175 °C, unpowered	$\pm (0.5 \% + 0.005 \Omega)$			
Temperature Cycling	AEC-Q200 REV D conditions: JESD22 method JA-104 1000 cycles, -55 °C to +125 °C dwell time -15 min	± (1 % + 0.005 Ω)			
Biased Humidity	AEC-Q200 REV D conditions: MIL-STD-202 method 103 1000 h, 85 °C, 85 % RH (10 % of free air power)	± (1 % +0.005 Ω)			
Operational Life	AEC-Q200 REV D conditions: MIL-STD-202 method 108 1000 h, 90/30, powered (free air) at +125 °C	± (1 % +0.005 Ω)			
ESD Human Body Model	AEC-Q200 REV D conditions: AEC-Q200-002 IEC 61000-4-2 25 kV _{AD}	± (0.5 % +0.005 Ω)			
Vibration	AEC-Q200 REV D conditions: MIL-STD-202 method 204 5 g's for 20 min, 12 cycles test from 10 Hz to 2000 Hz	± (0.5 % +0.005 Ω)			
Mechanical Shock	AEC-Q200 REV D conditions: MIL-STD-202 method 213 100 g's, 6 ms, 3.75 m/s 3 shocks/direction	± (0.5 % +0.005 Ω)			
Terminal Strength	AEC-Q200 REV D conditions: AEC-Q200-006 2 kgf, 60 sec	± (0.25 % +0.01 Ω)			

SPECIAL FEATURES					
Resistance Values	≥ 0.015 ≥ 0.1		> 20		
Tolerances	± 1 % at ± 10 %				
Typical Temperature Coefficient (-55 ° to +175 °C)	± 900 ppm/°C	± 350 ppm/°C	± 200 ppm/°C		

CHOICE OF THE HEATSINK

The user must choose according to the working conditions of the component (power, room temperature). Maximum working temperature must not exceed 175 °C. The dissipated power is simply calculated by the following ratio:

$$P \; = \; \frac{\Delta T}{[R_{TH \; (j \; - \; c)}] + [R_{TH \; (c \; - \; h)}] + [R_{TH \; (h \; - \; a)}]}^{(1)}$$

P: Expressed in W

 ΔT : Difference between maximum working temperature and room temperature

R_{TH (j - c)}: Thermal resistance value measured between resistive layer and outer side of the resistor. It is the thermal resistance of the component.

R_{TH (c - h)}: Thermal resistance value measured between outer side of the resistor and upper side of the heatsink. This is the thermal resistance of the interface (grease, thermal pad), and the quality of the fastening device.

R_{TH (h - a)}: Thermal resistance of the heatsink

Example:

R_{TH (c - h)} + R_{TH (h - a)} for LTO 150 power rating 10 W at ambient temperature +25 °C

Thermal resistance R_{TH (j - c)}: 0.87 °C/W Considering equation ⁽¹⁾ we have:

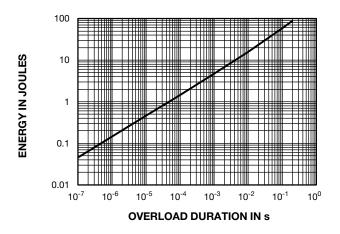
$$\begin{array}{l} \Delta T = 175~^{\circ}C - 25~^{\circ}C = 150~^{\circ}C \\ R_{TH~(j~-c)} + R_{TH~(c~-h)} + R_{TH~(h~-a)} = \frac{\Delta T}{P} = \frac{150}{10} = 15~^{\circ}C/W \\ R_{TH~(c~-h)} + R_{TH~(h~-a)} = 15~^{\circ}C/W - 0.87~^{\circ}C/W = 14.13~^{\circ}C/W \end{array}$$

Example with a thermal grease $R_{TH (c-h)} = 0.5$ °C/W, we need a heatsink with $R_{TH (h-a)} = 13.63$ °C/W

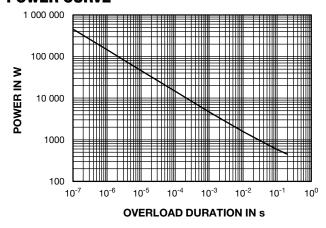
	CONFIGURATION 1	CONFIGURATION 2	CONFIGURATION 3
Power Dissipation (W)	150	35	26
T° Resistive Element (°C)	175	175	175
R _{TH (j - c)} Max. (°C/W)	0.87	0.87 0.87	
R _{TH (c - h)} Typ. (°C/W)	0.127	0.33	0.33
R _{TH (h - a)} Max. (°C/W)	0.069	3.09	4.57
Fluid T° (°C)	15 (water)	25 (air)	25 (air)

CONFIGURATION 1: Water cooling heatsink CP15 from Lytron (304 mm x 95.3 mm x 8 mm) with water flow rate 4 LPM and thermal grease Bluesil Past 340 from BlueStar silicones. MAX08NG from AAVID screwed clip mounting.

CONFIGURATION 2: Air cooling heatsink 0S552 from AAVID (48 mm x 80 mm x 70 mm) and thermal grease Bluesil Past 340 from BlueStar silicones. MAX03HNG from AAVID clipped mounting.

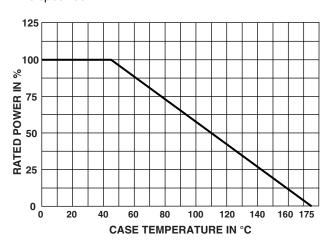

CONFIGURATION 3: Air cooling heatsink 0S550 from AAVID (31.75 mm x 58.7 mm x 70 mm) and thermal grease Bluesil Past 340 from BlueStar silicones. MAX03HNG from AAVID clipped mounting.

MOMENTARY OVERLOAD


In any case the applied voltage must be lower than the maximum overload voltage of 750 V during 5 s.

ENERGY CURVE (SINGLE PULSE)

The values indicated on the graph below are applicable to resistors in air or mounted onto a heatsink.

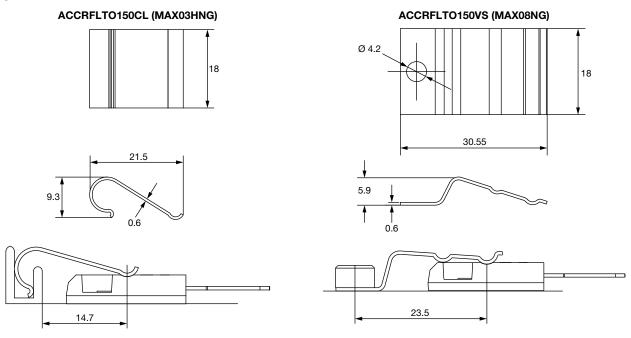


POWER CURVE

POWER RATING

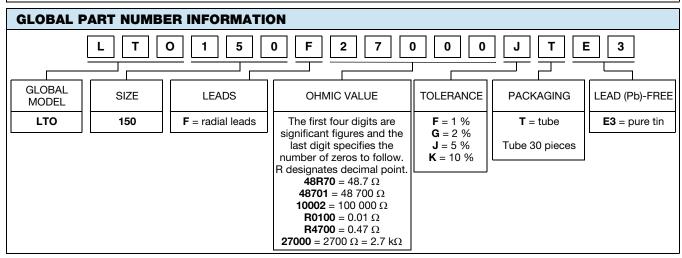
The temperature of the case should be maintained within the limits specified.

PACKAGING


Tube of 30 units

MARKING

Model, style, resistance value (in Ω), tolerance (in %), manufacturing date, Vishay Sfernice trademark according IEC 60062.


CLIPS

CLIP MOUNTING RECOMMENDATION

To improve the thermal conductivity, all surface of ceramic has to be coated with a thermal silicon grease. If you not use our clipped or screwed clip, it is recommended that a mounting force of 60 N to 110 N be applied to the center of the molding case of the component. Tightening torque 2 Nm when mounting screwed clip MAX08NG on heatsink.

ORDERING INFORMATION							
LTO	150	F	2.7 k Ω	± 1 %	XXX	TU30	e3
MODEL	STYLE	CONNECTIONS	RESISTANCE VALUE	TOLERANCE	CUSTOM DESIGN	PACKAGING	LEAD (Pb)-FREE
				±1%	Optional		
				±2 %	on request:		
				± 5 %	special TCR,		
				± 10 %	shape etc.		

CLIP PART NUMBER INFORMATION				
REFERENCE	PART NUMBER FOR ORDERING			
Screwed clip MAX08NG	ACCRFLTO150VS			
Clipped clip MAX03HNG	ACCRFLTO150CL			

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Thick Film Resistors - Through Hole category:

Click to view products by Vishay manufacturer:

Other Similar products are found below:

```
        M8340104M4701GCD03
        M8340105K3300GGD03
        M8340105K3922FGD03
        M8340106K1002JCD03
        M8340107K1002GGD03

        M8340107K1152FGD03
        M8340107K2701GCD03
        M8340107M2002GCD03
        M8340108K1000GCD03
        M8340108K5601GCD03

        M8340108M2203GCD03
        M8340109K1002JCD03
        M8340109K1003GCD03
        M8340109K5101GGD03
        FHV05010M0FKRB
        MOX-2-

        125005F
        MP850-3.00-1%
        hte24511kf
        SM-SP093
        ARC3.11 2M J A
        M8340105K1001GCD03
        M8340105K3002GGD03

        M8340105M1002JGD03
        M8340107K2001GGD03
        M8340107K4701GGD03
        M8340107K5101GGD03
        M8340107K5600GGD03

        M8340108K4990FGD03
        M8340108K49R9FGD03
        M8340108M10R0GGD03
        M8340109K2202GGD03
        M8340109K5601GCD03
        MOX-GRD-001

        M0X-SP020
        MOX-SP025E
        M8340107K2001GCD03
        M8340102M4701GBD04
        M8340102K1002GBD04

        M8340104K39R2FCD03
        M8340106MA012JHD03
        M8340107K1003GGD03
        M8126-9.09K-0.1%
        MS126-249K-0.1%
        MS-221-82R5
```