

Wirewound Resistors, Precision Power, Low Value, Commercial, Axial Lead

FEATURES

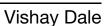
- Ideal for all types of current sensing applications including switching and linear power supplies, instruments and power amplifiers
- · Excellent load life stability
- Low temperature coefficient
- Low inductance
- MIL-PRF-49465 qualified, type RLV resistors can be found at: www.vishay.com/doc?30283
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

HALOGEN FREE

> (5-2008) Available

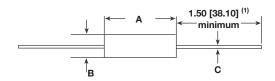
Note

This datasheet provides information about parts that are RoHS-compliant and / or parts that are non-RoHS-compliant. For example, parts with lead (Pb) terminations are not RoHS-compliant. Please see the information / tables in this datasheet for details.


STANDARD ELECTRICAL SPECIFICATIONS						
GLOBAL MODEL	HISTORICAL MODEL	POWER RATING P _{25 °C} W	RESISTANCE RANGE $^{(1)}$ Ω	TOLERANCE ± %	TECHNOLOGY	WEIGHT (typical) g
LVR01	LVR-1	1	0.01 to 0.1 ⁽²⁾	1, 3, 5, 10	Metal strip	0.5
LVR03	LVR-3	3	0.005 to 0.2	1, 3, 5, 10	Metal strip	2
LVR05	LVR-5	5	0.005 to 0.3	1, 3, 5, 10	Metal strip	5
LVR10	LVR-10	10	0.01 to 0.8	1, 3, 5, 10	Coil spacewound	11

Notes

- (1) Resistance is measured 3/8" [9.52 mm] from the body of the resistor, or at 1.183" [30.05 mm], 1.315" [33.40 mm], 1.675" [42.545 mm] or 2.575" [65.405 mm] spacing for the LVR01, LVR03, LVR05 and LVR10 respectively.
- (2) LVR01: Standard resistance values are 0.01 Ω , 0.015 Ω , 0.02 Ω , 0.025 Ω , 0.03 Ω , 0.033 Ω , 0.04 Ω , 0.05 Ω , 0.051 Ω , 0.06 Ω , 0.068 Ω , 0.07 Ω , 0.08 Ω , 0.09 Ω and 0.1 Ω with 1 % tolerance. Other resistance values may be available upon request.


TECHNICAL SPECIFICATIONS					
PARAMETER	UNIT	LVR01	LVR03	LVR05	LVR10
Operating Temperature Range	°C	-65 to +175 -65 to +275			
Dielectric Withstanding Voltage	V_{AC}	1000	1000	1000	1000
Insulation Resistance	Ω	10 000 M Ω minimum dry			
Short Time Overload	-	5 x rated power for 5 s			10 x rated power for 5 s
Terminal Strength (minimum)	lb	5	10	10	10
Maximum Working Voltage	V	$(P \times R)^{1/2}$			

GLOBAL PART NUMBER INFORMATION Global Part Numbering example: LVR055L000FS73 (visit www.vishav.net Vishay Dale parts numbering manual for all options) ٧ R 5 5 S 7 3 **GLOBAL MODEL** VALUE **TOLERANCE PACKAGING SPECIAL** (Dash Number) LVR01 R = Decimal $D = \pm 0.5 \%$ E12 = Lead (Pb)-free bulk (up to 3 digits) LVR03 $\mathbf{L} = \mathbf{m}\Omega$ $F = \pm 1.0 \%$ **E03** = Lead (Pb)-free lacer pack (LVR10) From 1 to 999 LVR05 (values $< 0.010 \Omega$) $G = \pm 2.0 \%$ E70 = Lead (Pb)-free, tape/reel 1000 pieces (LVR01, 03) as applicable $R1500 = 0.15 \Omega$ E73 = Lead (Pb)-free, tape/reel 500 pieces LVR10 $H = \pm 3.0 \%$ $7L000 = 0.007\Omega$ $J = \pm 5.0 \%$ B12 = Tin/lead bulk $K = \pm 10.0 \%$ L03 = Tin/lead lacer pack (LVR10) S70 = Tin/lead, tape/reel 1000 pieces (LVR01, 03) S73 = Tin/lead, tape/reel 500 pieces

DIMENSIONS in inches [millimeters]

	DIMENSIONS in inches [millimeters]				
MODEL	A ± 0.010 [0.254]	B ± 0.010 [0.254]	C ± 0.002 [0.051]		
LVR01	0.427 [10.85]	0.115 [2.92]	0.020 [0.508]		
LVR03	0.560 [14.22]	0.205 [5.21]	0.032 [0.813]		
LVR05	0.925 [23.50]	0.330 [8.38]	0.040 [1.02]		
LVR10	1.828 [46.43]	0.392 [9.96]	0.040 [1.02]		

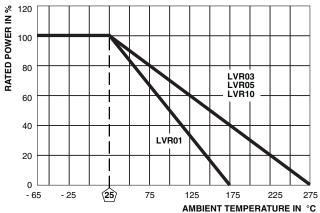
Note

MATERIAL SPECIFICATIONS

Element: Self-supporting nickel-chrome alloy (LVR10 also utilizes manganin)

Encapsulation: High temperature mold compound

Terminals: Tinned copper


Part Marking: Dale, model, wattage, value, tolerance, date

code

Packaging: Reference "Wirewound Through Hole Resistor

Packaging" (www.vishay.com/doc?21028)

DERATING

TEMPERATURE COEFFICIENT (ppm/°C)					
LVR01	LVR03	LVR05	LVR10		
$\begin{array}{c} \pm \ 1000 \ \text{for} \ 0.01 \ \Omega \ \text{to} \ 0.0249 \ \Omega \\ \pm \ 400 \ \text{for} \ 0.025 \ \Omega \ \text{to} \ 0.0499 \ \Omega \\ \pm \ 300 \ \text{for} \ 0.05 \ \Omega \ \text{to} \ 0.0749 \ \Omega \\ \pm \ 250 \ \text{for} \ 0.075 \ \Omega \ \text{to} \ 0.099 \ \Omega \\ \pm \ 150 \ \text{for} \ 0.1 \ \Omega \ \text{to} \ 0.1 \ \Omega \end{array}$	$\begin{array}{l} \pm 850 \; \text{for} \; 0.005 \; \Omega \; \text{to} \; 0.0099 \; \Omega \\ \pm \; 350 \; \text{for} \; 0.01 \; \Omega \; \text{to} \; 0.0249 \; \Omega \\ \pm \; 200 \; \text{for} \; 0.025 \; \Omega \; \text{to} \; 0.0499 \; \Omega \\ \pm \; 125 \; \text{for} \; 0.05 \; \Omega \; \text{to} \; 0.0749 \; \Omega \\ \pm \; 75 \; \text{for} \; 0.075 \; \Omega \; \text{to} \; 0.099 \; \Omega \\ \pm \; 50 \; \text{for} \; 0.1 \; \Omega \; \text{to} \; 0.2 \; \Omega \end{array}$	$\begin{array}{l} \pm 650 \text{ for } 0.005 \Omega \text{ to } 0.0099 \Omega \\ \pm 250 \text{ for } 0.01 \Omega \text{ to } 0.0249 \Omega \\ \pm 150 \text{ for } 0.025 \Omega \text{ to } 0.0499 \Omega \\ \pm 100 \text{ for } 0.05 \Omega \text{ to } 0.0749 \Omega \\ \pm 75 \text{ for } 0.075 \Omega \text{ to } 0.099 \Omega \\ \pm 50 \text{ for } 0.1 \Omega \text{ to } 0.3 \Omega \end{array}$	$\begin{array}{l} \pm \ 300 \ \text{for} \ 0.01 \ \Omega \ \text{to} \ 0.0249 \ \Omega \\ \pm \ 150 \ \text{for} \ 0.025 \ \Omega \ \text{to} \ 0.0499 \ \Omega \\ \pm \ 125 \ \text{for} \ 0.05 \ \Omega \ \text{to} \ 0.0749 \ \Omega \\ \pm \ 100 \ \text{for} \ 0.075 \ \Omega \ \text{to} \ 0.099 \ \Omega \\ \pm \ 50 \ \text{for} \ 0.1 \ \Omega \ \text{to} \ 0.8 \ \Omega \end{array}$		

PERFORMANCE				
TEST	CONDITIONS OF TEST	TEST LIMITS		
Thermal Shock	-65 °C to +125 °C, 5 cycles, 15 min at each extreme	± (0.2 % + 0.0005 Ω) ΔR		
Short Time Overload	5x rated power (LVR01, 03, 05), 10 x rated power (LVR10) for 5 s	\pm (0.5 % + 0.0005 Ω) ΔR		
Low Temperature Storage	-65 °C for 24 h	± (0.2 % + 0.0005 Ω) ΔR		
High Temperature Exposure	250 h at +275 °C (+175 °C for LVR01)	± (2.0 % + 0.0005 Ω) ΔR		
Dielectric Withstanding Voltage	1000 V _{RMS} , 1 min	± (0.1 % + 0.0005 Ω) ΔR		
Insulation Resistance	MIL-STD-202 Method 302, 100 V	1000 MΩ minimum		
Moisture Resistance	MIL-STD-202 Method 106, 7b not applicable	± (0.2 % + 0.0005 Ω) ΔR		
Shock, Specified Pulse	MIL-STD-202 Method 213, 100 g's for 6 ms, 10 shocks	± (0.1 % + 0.0005 Ω) ΔR		
Vibration, High Frequency	Frequency varied 10 Hz to 2000 Hz, 20 g peak, 2 directions 6 h each	± (0.1 % + 0.0005 Ω) ΔR		
Load Life	2000 h at rated power, +25 °C, 1.5 h "ON", 0.5 h "OFF"	± (2.0 % + 0.0005 Ω) ΔR		
Bias Humidity	+85 °C, 85 % RH, 10 % bias, 1000 h	± (1.0 % + 0.0005 Ω) ΔR		

⁽¹⁾ On some standard reel pack methods, the leads may be trimmed to a shorter length than shown

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Wirewound Resistors - Through Hole category:

Click to view products by Vishay manufacturer:

Other Similar products are found below:

75822-2K4 90J56R PW10-39R-5% ALSR1-20 EP3WS47RJ RWR81S1000BRB12 RWR81S12R4FRB12 RWR81SR511FRB12

RWR81SR619FRBSL RWR89S9310FPB12 27J1K0 93J62RE AC10000002208JAB00 1HJ-25 FSQ5WR47J 25J39K 25J5R0-B 25W1D0

272-303-JBW 280-PRM5-150-RC CP0005270R0JE1491 CPCC0510R00JE32 CPCC051R000JB31 CPW052K500JE143

CPW05700R0JE143 C1010RJL CA000210R00JE14 VPR5F1500 RS02B887R0FE73 RWR74SR604FRB12 RWR84S1001FRB12

RWR84S20R0FSBSL RWR89S6190FSB12 CPW055R000JB143 ULW5-39R0JT075 W31-R47JA1 W31-R047JA1 VP25K-120 VC3D900

ULW5-68RJT075 65888-3R3 CB5JB10R0 CPW151K500JE313 RWR80N3400FSB12 RWR81S1000FRB12 RWR81S1000FSB12

RWR89S6R81FRB12 RWR89N30R1FRB12 RWR81S4R99FPB12 RWR74S4R02FRRSL