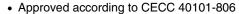
Vishay Beyschlag


Precision Leaded Resistors

DESCRIPTION

MBA/SMA 0204, MBB/SMA 0207 and MBE/SMA 0414 precision leaded thin film resistors combine the proven reliability of the professional products with an advanced level of precision and stability. Therefore they are perfectly suited for applications in the fields of test and measuring equipment along with industrial and medical electronics.

FEATURES

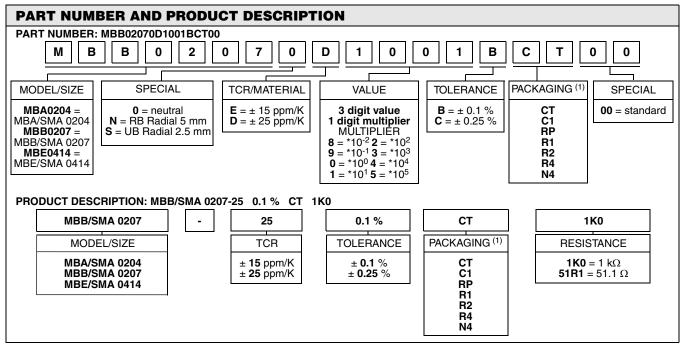
- · Advanced thin film technology
- Low TCR: ± 15 to ± 25 ppm/K
- Precision tolerance of value: \pm 0.1 % and \pm 0.25 %
- Lead (Pb)-free solder contacts
- Pure tin plating provides compatibility with lead (Pb)-free and lead containing soldering processes
- Compatible with "Restriction of the use of Hazardous Substances" (RoHS) directive 2002/95/EC (issue 2004)
- Superior overall stability: class 0.05 • Wide precision range: 10Ω to $1.5 M\Omega$

APPLICATIONS

- · Test and measuring equipment
- · Industrial electronics
- Medical electronics

METRIC SIZE							
DIN:	0204	0207	0414				
CECC:	Α	В	D				

TECHNICAL SPECIFICATI	ONS		ı			
DESCRIPTION	MBA/SI	MA 0204	MBB/SMA 0207		MBE/SMA 0414	
CECC size	,	A	ı	В	1	D
Resistance range	22 Ω to	332 kΩ	10 Ω to	ο 1 ΜΩ	22 Ω to	1.5 MΩ
Resistance tolerance			± 0.25 %	o; ± 0.1 %		
Temperature coefficient			± 25 ppm/K	; ± 15 ppm/K		
Operation mode	precision	standard	precision	standard	precision	standard
Climatic category (LCT/UCT/days)	10/85/56	55/125/56	10/85/56	55/125/56	10/85/56	55/125/56
Rated dissipation, P ₇₀	0.07 W	0.25 W	0.11 W	0.40 W	0.17 W	0.65 W
Operating voltage, U _{max} AC/DC	200 V		350 V		500 V	
Film temperature	85 °C	125 °C	85 °C	125 °C	85 °C	125 °C
Max. resistance change at P_{70} for resistance range, $\Delta R/R$ max., after:	100 Ω to	o 100 kΩ	100 Ω to 270 k Ω		100 Ω to 470 kΩ	
1000 h	≤ 0.05 %	≤ 0.25 %	≤ 0.03 %	≤ 0.15 %	≤ 0.05 %	≤ 0.25 %
8000 h	≤ 0.1 %	≤ 0.5 %	≤ 0.1 %	≤ 0.5 %	≤ 0.1 %	≤ 0.5 %
225 000 h	≤ 0.3 %	≤ 1.5 %	≤ 0.3 %	≤ 1.5 %	≤ 0.3 %	≤ 1.5 %
Specified lifetime	225	000 h	225 000 h		225 000 h	
Permissible voltage against ambient:						
1 minute	30	0 V	500 V		800 V	
continuous	us 75 V		75 V		75 V	
Failure rate	≤ 0.7 >	⟨ 10 ⁻⁹ /h	≤ 0.3 ×	c 10 ⁻⁹ /h	≤ 0.1 x 10 ⁻⁹ /h	


Note:

MB_ series has been merged with the related SMA series to form one series "MB_/SMA__".

Precision Leaded Resistors

Vishay Beyschlag

Note:

The PART NUMBER shown above is to facilitate the unified part numbering system for ordering products.

PACKAGING						
MODEL	RE	EL	В	OX		
	PIECES	CODE	PIECES	CODE		
MBA/SMA 0204	1000 5000	R1 RP	1000 5000	C1 CT		
MBB/SMA 0207	1000 4000 5000	R1 R4 (for RB, UB) RP	1000 4000 5000	C1 N4 (for RB, UB) CT		
MBE/SMA 0414	2500	R2	1000	C1		

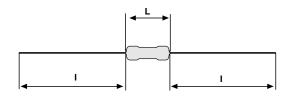
12NC CODE FOR HISTORICAL CODING REFERENCE OF MBA 0204/MBB 0207/MBE 0414								
DESCRIPTION			ORDERING CODE 2312 (BANDOLIER)					
DES	SCRIPTION		AMMO	PACK		REEL		
TYPE	TCR	TOL.	C1 1000 units	CT 5000 units	R1 1000 units	R2 2500 units	RP 5000 units	
	± 25 ppm/K	± 0.25 %	901 6	906 6	701 6	-	806 6	
	± 25 ppiii/K	± 0.1 %	901 7	906 7	701 7	-	806 7	
MBA 0204	± 15 ppm/K	± 0.25 %	902 6	907 6	702 6	-	807 6	
		± 0.1 %	902 7	907 7	702 7	-	807 7	
	± 25 ppm/K	± 0.25 %	911 6	916 6	711 6	-	816 6	
MBB 0207		± 0.1 %	911 7	916 7	711 7	-	816 7	
IVIDD UZU7	45	± 0.25 %	912 6	917 6	712 6	-	817 6	
	± 15 ppm/K	± 0.1 %	912 7	917 7	712 7	-	817 7	
	± 25 ppm/K	± 0.25 %	921 6	-	-	826 6	-	
MBE 0414	± 25 ppiii/K	± 0.1 %	921 7	=	=	826 7	-	
	± 15 ppm/K	± 0.25 %	922 6	-	-	827 6	-	
	± 15 ppm/K	± 0.1 %	922 7	-	-	827 7	-	

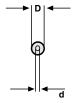
⁽¹⁾ Please refer to table PACKAGING for complete information.

Vishay Beyschlag

Precision Leaded Resistors

12NC INFORMATION


Last Digit of 12NC Indicating Resistance Decade


RESISTANCE DECADE	LAST DIGIT
10 Ω to 99.9 Ω	9
100 Ω to 999 Ω	1
1 kΩ to 9.99 kΩ	2
10 kΩ to 99.9 kΩ	3
100 kΩ to 999 kΩ	4
1 MΩ to 9.99 MΩ	5

12NC Example (For Historical coding reference of MBA 0204/MBB 0207/MBE 0414)

The 12NC code of a MBA 0204 resistor, value 47 k Ω and TCR 25 with \pm 0.1 % tolerance, supplied on bandolier in a box of 5000 units is: 2312 906 74703.

DIMENSIONS

DIMENSIONS - leaded resistor types, mass and relevant physical dimensions								
TYPE	D _{max} (mm)	L _{max} (mm)	d _{nom} (mm)	l _{min} (mm)	M _{min} (mm)	MASS (mg)		
MBA/SMA 0204	1.6	3.6	0.5	29.0	5.0	125		
MBB/SMA 0207	2.5	6.3	0.6	28.0	10.0 (1)	220		
MBE/SMA 0414	4.0	11.9	0.8	31.0	15.0	700		

Note:

⁽¹⁾ For $7.5 \le M < 10.0$ mm, use version MBB/SMA 0207 ... L0 without lacguer on the leads.

DESC	RIPTION		RESISTANCE VALUE (2)	
TCR	TOLERANCE	MBA/SMA 0204	MBB/SMA 0207	MBE/SMA 0414
. 25 ppm/V	± 0.25 %	22 Ω to 332 k Ω	10 Ω to 1 M Ω	22 Ω to 1.5 M Ω
± 25 ppm/K	± 0.1 %	43 Ω to 332 kΩ	10 Ω to 1 M Ω	43 Ω to 1 M Ω
± 15 ppm/K	± 0.25 %	22 Ω to 221 kΩ	10 Ω to 1 MΩ	22 Ω to 1 M Ω
	± 0.1 %	43 Ω to 221 k Ω	10 Ω to 1 M Ω	43 Ω to 1 M Ω

Note:

Resistance ranges printed in bold are preferred TCR/tolerance combinations with optimized availability.

⁽²⁾ Resistance values to be selected from E96 and E192 series, for other values please contact factory.

Precision Leaded Resistors

Vishay Beyschlag

DESCRIPTION

Production is strictly controlled and follows an extensive set of instructions established for reproducibility. A homogeneous film of metal alloy is deposited on a high grade ceramic body (85 % Al₂O₃) and conditioned to achieve the desired temperature coefficient. Nickel plated steel termination caps are firmly pressed on the metallized rods. A special laser is used to achieve the target value by smoothly cutting a helical groove in the resistive layer without damaging the ceramics. A further conditioning is applied in order to stabilise the trimming result. Connecting wires of electrolytic copper plated with 100 pure tin are welded to the termination caps. The resistors are covered by protective coating designed for electrical, mechanical and climatic protection. The terminations receive a final pure tin on nickel plating. Four or five colour code rings designate the resistance value and tolerance in accordance with IEC 60062.

The result of the determined production is verified by an extensive testing procedure performed on 100 of the individual resistors. Only accepted products are stuck directly on the adhesive tapes in accordance with **IEC 60286-1**.

ASSEMBLY

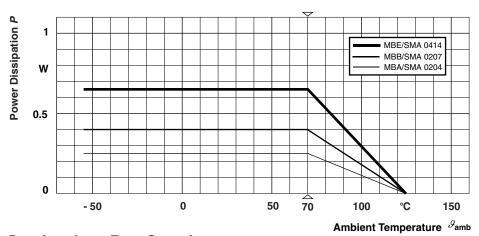
The resistors are suitable for processing on automatic insertion equipment and cutting and bending machines. Excellent solderability is proven, even after extended storage. They are suitable for automatic soldering using wave or dipping. The encapsulation is resistant to all cleaning solvents commonly used in the electronics industry, including alcohols, esters and aqueous solutions. The suitability of conformal coatings, if applied, shall be qualified

by appropriate means to ensure the long-term stability of the whole system.

The resistors are completely lead (Pb)-free, the pure tin plating provides compatibility with lead (Pb)-free and lead-containing soldering processes. The immunity of the plating against tin whisker growth has been proven under extensive testing. All products comply with the CEFIC-EECA-EICTA list of legal restrictions on hazardous substances. This includes full compliance with the following directives:

- 2000/53/EC End of Vehicle Life Directive (ELV)
- 2000/53/EC Annex II to End of Vehicle Life Directive (ELV II)
- 2002/95/EC Restriction of the use of Hazardous Substances Directive (RoHS)
- 2002/96/EC Waste Electrical and Electrical Equipment Directive (WEEE)

APPROVALS

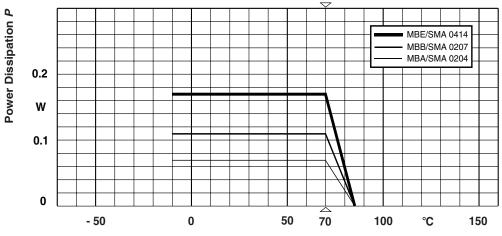

Where applicable, the resistors are tested in accordance with CECC 40101-806 which refers to EN 60115-1 and EN 140100. Approval of conformity is indicated by the CECC logo on the package label.

Vishay BEYSCHLAG has achieved "Approval of Manufacturer" in accordance with EN 100114-1.

SPECIALS

On request, resistors are available with established reliability in accordance with **CECC 40101-806 Version E**. Please refer to the special data sheet for information on failure rate level, available resistance ranges and ordering codes.

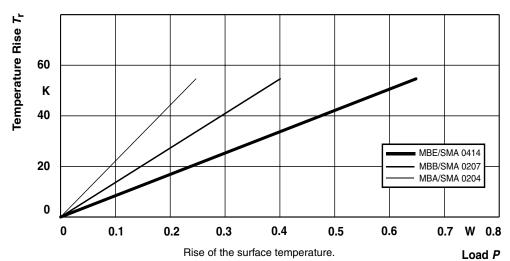
FUNCTIONAL PERFORMANCE


Derating - Long Term Operation

Document Number: 28767 For tech Revision: 28-Aug-07

Vishay Beyschlag

Precision Leaded Resistors



Derating - Precision Operation

Ambient Temperature $\,^{\mathcal{G}_{\mathrm{amb}}}$

Temperature Rise

Current Noise A₁ 1 μ۷/۷ 0.1 MBE/SMA 0414 MBB/SMA 0207 MBA/SMA 0204 0.01 1 k Ω 10 $k\Omega$ 100 $\mathbf{k}\Omega$ 1 M Ω 10 ${\rm M}\Omega$

Current Noise A₁ In Accordance With IEC 60195

Resistance Value R

Precision Leaded Resistors

Vishay Beyschlag

TESTS AND REQUIREMENTS

Essentially all tests are carried out in accordance with the following specifications:

EN 140000/IEC 60115-1, Generic specification (includes tests)

EN 140100/IEC 60115-2, Sectional specification (includes schedule for qualification approval)

CECC 40101-806, Detail specification (includes schedule for conformance inspection)

Most of the components are approved in accordance with the European CECC-system, where applicable. The Test Procedures and Requirements table contains only the most important tests. For the full test schedule refer to the documents listed above. The testing also covers most of the requirements specified by EIA/IS-703 and JIS-C-5202.

The tests are carried out in accordance with IEC 60068 and under standard atmospheric conditions in accordance with

IEC 60068-1, 5.3. Climatic category LCT/UCT/56 (rated temperature range: Lower Category Temperature, Upper Category Temperature; damp heat, long term, 56 days) is valid.

Unless otherwise specified the following values apply:

Temperature: 15 °C to 35 °C Relative humidity: 45 % to 75 %

Air pressure: 86 kPa to 106 kPa (860 mbar to 1060 mbar).

For testing the components are mounted on a test board in accordance with IEC 60115-1, 4.31 unless otherwise specified.

In the Test Procedures and Requirements table, only the tests and requirements are listed with reference to the relevant clauses of IEC 60115-1 and IEC 60 068-2; a short description of the test procedure is also given.

TEST PROCEDURES AND REQUIREMENTS								
IEC 60115-1 CLAUSE	IEC 60068-2 TEST METHOD	TEST	PROCEDURE	REQUIREMENTS PERMISSIBLE CHANGE ($\triangle R_{\sf max}$)				
			stability for product types:	STABILITY CLASS 0.05	STABILITY CLASS 0.1	STABILITY CLASS 0.25		
			MBA/SMA 0204	100 Ω to 100 k Ω	43 Ω to < 100 Ω ; > 100 k Ω to 221 k Ω	22 Ω to < 43 Ω ; > 221 k Ω to 332 k Ω		
			MBB/SMA 0207	100 Ω to 270 k Ω	43 Ω to < 100 Ω ; > 270 k Ω to 510 k Ω	10 Ω to < 43 Ω ; > 510 k Ω to 1 M Ω		
			MBE/SMA 0414	100 Ω to 470 k Ω	43 Ω to <100 Ω ; > 470 k Ω to 1 M Ω	22 Ω to < 43 Ω ; > 1 M Ω to 1.5 M Ω		
4.5	-	resistance	-	± 0.25 %; ± 0.1 %				
4.8.4.2	_	temperature coefficient	at 20/LCT/20 °C and 20/UCT/20 °C	± 25 ppm/K; ±15 ppm/K				
4.25.1		endurance at 70 °C: precision operation mode	$U = \sqrt{P_{70} \times R}$ or $U = U_{\text{max}}$; 1.5 h on; 0.5 h off	± (0.05 % R + 0.01 Ω) ⁽¹⁾	± (0.1 % R + 0.01 Ω)	± (0.25 % R + 0.05 Ω) ⁽²⁾		
			70 °C; 8000 h	± (0.1 % R + 0.01 Ω)	± (0.2 % R + 0.01 Ω)	± (0.5 % R + 0.05 Ω)		
	_	endurance at 70 °C: standard operation mode	$U = \sqrt{P_{70} \times R}$ or $U = U_{\text{max}}$; 1.5 h on; 0.5 h off					

Vishay Beyschlag

Precision Leaded Resistors

TEST I	PROCED	URES AND	REQUIREMENTS	S			
IEC 60115-1 CLAUSE	IEC 60068-2 TEST METHOD	TEST	PROCEDURE	REQUIREMENTS PERMISSIBLE CHANGE ($\Delta R_{\sf max}$)			
			stability for product types:	STABILITY CLASS 0.05	STABILITY CLASS 0.1	STABILITY CLASS 0.25	
			MBA/SMA 0204	100 Ω to 100 kΩ	43 Ω to < 100 Ω ; > 100 k Ω to 221 k Ω	22 Ω to < 43 Ω ; > 221 k Ω to 332 k Ω	
			MBB/SMA 0207	100 Ω to 270 kΩ	43 Ω to < 100 Ω ; > 270 k Ω to 510 k Ω	10 Ω to < 43 Ω ; > 510 k Ω to 1 M Ω	
			MBE/SMA 0414	100 Ω to 470 k Ω	43 Ω to <100 Ω ; > 470 k Ω to 1 M Ω	22 Ω to < 43 Ω ; > 1 M Ω to 1.5 M Ω	
4.24	78 (Cab)	damp heat, steady state	(40 ± 2) °C; 56 days; (93 ± 3) % RH	± (0.05 % R +0.01 Ω)	± (0.1 % R + 0.01 Ω)	± (0.25 % R + 0.05 Ω)	
4.23		climatic sequence:					
4.23.2	2 (Ba)	dry heat	125 °C; 16 h				
4.23.3	30 (Db)	damp heat, cyclic	55 °C; 24 h; 90 % to 100 % RH; 1 cycle				
4.23.4	1 (Aa)	cold	- 55 °C; 2 h				
4.23.5	13 (M)	low air pressure	8.5 kPa; 2 h; 15 °C to 35 °C				
4.23.6	30 (Db)	damp heat, cyclic	55 °C; 5 days; 95 % to 100 % RH; 5 cycles	\pm (0.05 % R + 0.01 Ω) no visible damage	\pm (0.1 % R + 0.01 Ω) no visible damage	± (0.25 % <i>R</i> + 0.05 Ω) no visible damage	
4.13	-	short time overload	room temperature; $U = 2.5 \text{ x} \sqrt{P_{70} \text{ x } R}$ or $U = 2 \text{ x } U_{\text{max}}$; 5 s	\pm (0.01 % R + 0.01 Ω) no visible damage	± (0.02 % R + 0.01 Ω) no visible damage	± (0.05 % <i>R</i> + 0.01 Ω) no visible damage	
4.19	14 (Na)	rapid change of temperature	30 minutes at LCT and 30 minutes at UCT; 5 cycles	\pm (0.01 % R + 0.01 Ω) no visible damage	\pm (0.02 % R + 0.01 Ω) no visible damage	± (0.05 % <i>R</i> + 0.01 Ω) no visible damage	

Precision Leaded Resistors

Vishay Beyschlag

TEST PROCEDURES AND REQUIREMENTS							
IEC 60115-1 CLAUSE	IEC 60068-2 TEST METHOD	TEST	PROCEDURE	REQUIREMENTS PERMISSIBLE CHANGE ($\triangle R_{\sf max}$)			
			stability for product types:	STABILITY CLASS 0.05	STABILITY CLASS 0.1	STABILITY CLASS 0.25	
			MBA/SMA 0204	100 Ω to 100 kΩ	43 Ω to < 100 Ω ; > 100 k Ω to 221 k Ω	22 Ω to < 43 Ω ; > 221 k Ω to 332 k Ω	
			MBB/SMA 0207	100 Ω to 270 k Ω	43 Ω to < 100 Ω ; > 270 k Ω to 510 k Ω	10 Ω to < 43 Ω ; > 510 k Ω to 1 M Ω	
			MBE/SMA 0414	100 Ω to 470 k Ω	43 Ω to <100 Ω ; > 470 k Ω to 1 M Ω	22 Ω to < 43 Ω ; > 1 M Ω to 1.5 M Ω	
4.29	45 (XA)	component solvent resistance	isopropyl alcohol + 23 °C; toothbrush method	marking legible; no visible damage			
4.18.2	20 (Tb)	resistance to soldering heat	unmounted components; (260 ± 5) °C; (10 ± 1) s	± (0.01 % <i>R</i> + 0.01 Ω) no visible damage	\pm (0.02 % R + 0.01 Ω) no visible damage	± (0.05 % <i>R</i> + 0.01 Ω) no visible damage	
4.17	20 (Ta)	solderability	+ 235 °C; 2 s solder bath method	good tinning (≥ 95 % covered, no visible damage)			
4.22	6 (B4)	vibration	6 h; 10 Hz to 2000 Hz 1.5 mm or 196 m/s ²	± (0.01 % R + 0.01 Ω)	± (0.02 % R + 0.01 Ω)	± (0.05 % R + 0.01 Ω)	
4.16	21 (Ua ₁) 21 (Ub) 21 (Uc)	robustness of terminations	tensile, bending and torsion	± (0.01 % R + 0.01 Ω)	± (0.02 % R + 0.01 Ω)	± (0.05 % R + 0.01 Ω)	
4.7	-	voltage proof	<i>U</i> _{RMS} = 100 V; 60 s	no flashover or breakdown			
	-		70 °C; 1000 h	$\pm (0.25 \% R + 0.05 \Omega)^{(2)}$	-	-	
			70 °C; 8000 h	± (0.5 % R + 0.05 Ω)	-	-	
4.25.3	_	endurance at upper category temperature	85 °C; 1000 h 125 °C; 1000 h	± (0.05 % R + 0.01 Ω)	± (0.1 % R + 0.01 Ω)	± (0.25 % R + 0.05 Ω)	

Notes:

 $^{(1)}$ ± (0.03 % R + 0.01 Ω) for MBB/SMA 0207

 $^{(2)}$ ± (0.15 % R + 0.05 Ω) for MBB/SMA 0207

Legal Disclaimer Notice

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

www.vishay.com Revision: 08-Apr-05

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Wirewound Resistors - Through Hole category:

Click to view products by Vishay manufacturer:

Other Similar products are found below:

75822-2K4 90J56R AC03000001208JAC00 EP3WS47RJ C1010KJL C1015RJL C3A10KJT 27J1K0 ES3W47RJ AC04000001500JAC00 AC10000002208JAB00 AC10000004708JAB00 SQMW5R39J SQPW5R22J SQPW5R33J 1879927-3 FCB2100RJ T505 FSQ5WR47J FW10A33R0JA CPCC03R5000JB31 CPCC0510R00JE32 CPCC051R000JB31 CPCP10500R0JE32 CPW05700R0JE143 CPW152K500JE313 C1010RJL C10R47JL C141K0JL C144R7JL ES05W100RJ SQMW1047RJ SQMW210RJ CPCC03R2000JB31 CPCC0515R00JE01 CPW055R000JB143 CPW103K300JE143 CPW202R000JB14 ULW5-39R0JT075 W31-R47JA1 ULW5-68RJT075 SQBW401K0JFASTON SPH1001JLF 65888-3R3 CPCC10R5100JE66 SQP500JB-400R SQBW403R3JFASTON 280-PRM7-4.7-RC CW02B9R100JE73 CPCP05R1000JE32