AC and Pulse Metallized Polypropylene Film Capacitors MKP Axial Type

FEATURES

 Precision capacitor, tolerance 1 % and 2 %. Intermediate values are available of the E96 series

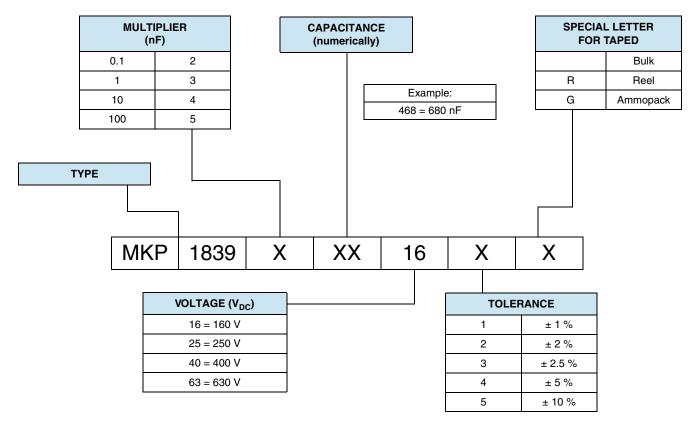
(5-2008)

• Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- · Pulse operations
- · SMPS and thyristor circuits
- · Storage, filter, timing and sample and hold circuits

QUICK REFERENCE DATA	
Capacitance range (E12 series)	47 pF to 22 μF
Capacitance tolerance	± 10 %, ± 5 %, ± 2.5 %, ± 2 %, ± 1 %
Climatic testing class according to IEC 60068-1	55/100/56
Maximum application temperature	100 °C
Reference standards	IEC 60384-16
Dielectric	Polypropylene film
Electrodes	Metallized
Construction	Mono construction
Encapsulation	Plastic-wrapped, epoxy resin sealed. Flame retardant
Leads	Tinned wire
Marking	C-value; tolerance; rated voltage; manufacturer's type; code for dielectric material; manufacturer location, year and week; manufacturer's logo or name
Rated DC voltage	160 V _{DC} , 250 V _{DC} , 400 V _{DC} , 630 V _{DC}
Rated AC voltage	100 V _{AC} , 160 V _{AC} , 220 V _{AC} , 250 V _{AC}
Pull test on leads	≥ 20 N in direction of leads according to IEC 60068-2-21
Bent test on leads	2 bends through 90° with half of the force used in pull test


Note

• For more detailed data and test requirements, contact dc-film@vishay.com

DIMENSIONS in millimeters					
40.0 ±	$\begin{array}{c c} & & & \\ \hline & &$	D - Max.			
LEAD DIAMETER d _t	. II				
0.6 ± 0.06 ≤ 9.0 ≤ 19.0					
0.8 ± 0.08	< 16.5 > 26.5				
1.0 ± 0.1	> 16.5	> 26.5			

COMPOSITION OF CATALOG NUMBER

Note

(1) For detailed tape specifications refer to packaging information: www.vishay.com/doc?28139 or end of catalog

SPECIFIC REFERE	NCE DATA				
DESCRIPTION	PTION				
Tangent of loss angle:	а	t 1 kHz	at 10 kHz	at 100 kHz	
$C \le 0.1 \ \mu F$	4	x 10 ⁻⁴	6 x 10 ⁻⁴	40 x 10 ⁻⁴	
$0.1~\mu F < C \leq 1.0~\mu F$	4	x 10 ⁻⁴	6 x 10 ⁻⁴	-	
$C > 1.0 \mu F$	1	0 x 10 ⁻⁴	-	-	
CAPACITOR LENGTH	,	MAXIMUM PULSE	RISE TIME (dU/dt) _R [V/μs]		
(mm)	160 V _{DC}	250 V _{DC}	400 V _{DC}	630 V _{DC}	
11	240	300	515	700	
14	175	220	380	510	
19	100	125	200	280	
26.5	60	75	120	160	
31.5	45	60	95	120	
41.5	30	40	65	85	
If the maximum pulse volt	age is less than the rated	voltage higher dU/dt value	s can be permitted.		
R between leads, for $C \le 0$	0.33 μF at 100 V, 1 min		> .	> 100 000 MΩ	
RC between leads, for C >	0.33 μF at 100 V, 1 min			> 30 000 s	
R between leads and case, 100 V, 1 min			>	30~000~mΩ	
Withstanding (DC) voltage between leads and wrapped film (1.4 x U _{RAC} + 2000)			0) 28	340 V, 1 min	
Withstanding (DC) voltage	(cut off current 10 mA), r	se time 100 V/s	1.6	x U _{RDC} , 1 min	
Maximum application tem	perature			100 °C	

U _{RDC}	CAP.	CAPACITANCE	VOLTAGE		DIMEN	SIONS		
(V)	(μF)	CODE	CODE	V _{AC}	D	L		
	0.033	333			5.0	11.0		
	0.047	347			5.5	11.0		
	0.068	368			6.0	11.0		
	0.10	410			6.5	14.0		
	0.15	415			7.5	14.0		
	0.22	422			7.0	19.0		
	0.33	433			8.0	19.0		
	0.47	447			9.0	19.0		
160	0.68	468	16	100	8.5	26.5		
	1.0	510			10.5	26.5		
	1.5	515			12.0	26.5		
	2.2	522			13.0	31.5		
	3.3 4.7	533 547			15.5 15.5	31.5 41.5		
	6.8	568			18.5	41.5		
	10	610			22.0	41.5		
	15	615			24.5	41.5		
	22	622			28.5	41.5		
	0.010	310			5.0	11.0		
	0.015	315			5.0	11.0		
	0.022	322			5.0	11.0		
	0.033	333			5.5	11.0		
	0.047	347			6.0	14.0		
	0.068	368			6.5	14.0		
	0.10	410			7.5	14.0		
	0.15	415			7.0	19.0		
	0.22	422			8.5	19.0		
	0.33	433	25 160		8.0	26.5		
250	0.47	447		160	9.0	26.5		
	0.68 1.0	468 510			11.0 12.5	26.5 26.5		
	1.5	510				13.0	31.5	
	2.2	522			16.0	31.5		
	3.3	533			19.0	31.5		
	4.7	547			19.5	41.5		
	6.8	568					23.0	41.5
	10	610				22.0	41.5	
	15	615			24.5	41.5		
	22	622			28.5	41.5		
	0.0068	268			5.0	11.0		
	0.0082	282			5.0	11.0		
	0.010	310			5.5	11.0		
	0.015	315			6.0	11.0		
	0.022	322			6.5	14.0		
	0.033 0.047	333			7.0	14.0		
	0.047	347			8.0 8.5	14.0		
400	0.10	368 410	40	220 ⁽¹⁾	9.0	19.0 19.0		
400	0.15	415	40	220 . /	8.0	26.5		
	0.13	422			9.5	26.5		
	0.33	433			11.5	26.5		
	0.47	447			13.5	26.5		
	0.68	468			14.0	31.5		
	1.0	510			17.0	31.5		
	1.5	515			20.5	31.5		
	2.2	522			21.0	41.5		

U _{RDC}	CAP.	CAPACITANCE	VOLTAGE	17	DIMEN	SIONS													
(V)	(μF)	CODE	CODE	V _{AC}	D	L													
	0.000047	047			5.0	11.0													
	0.000051	051			5.0	11.0													
	0.000056	056			5.0	11.0													
	0.000062	056			5.0	11.0													
	0.000068	068			5.5	11.0													
	0.000075	075			5.5	11.0													
	0.000082	082			5.5	11.0													
	0.000091	091			6.0	11.0													
	0.00010	110			6.0	11.0													
	0.00011	111			6.0	11.0													
	0.00012	112			6.0	11.0													
	0.00013	113			6.0	11.0													
	0.00015	115			6.0	11.0													
	0.00016	116			6.0	11.0													
	0.00018	118			6.0	11.0													
	0.00020	120			6.0	11.0													
	0.00022	122			5.0	11.0													
	0.00024	124			5.0	11.0													
	0.00027	127			5.0	11.0													
	0.00030	130			5.0	11.0													
	0.00033	133			5.0	11.0													
	0.00036	136			5.0	11.0													
	0.00039	139			5.0	11.0													
	0.00043	143			5.0	11.0													
	0.00047	147			5.0	11.0													
	0.00051	151			5.0	11.0													
	0.00056	156			5.5	11.0													
	0.00062	162		(4)	5.5	11.0													
630	0.00068	168	63	250 ⁽¹⁾	5.5	11.0													
	0.00075	175			5.5	11.0													
	0.00082	182			5.0	11.0													
	0.00091	191			5.0	11.0													
	0.0010	210			5.0	11.0													
	0.0011	211			5.0	11.0													
	0.0012	212			5.0	11.0													
	0.0013	213			5.0	11.0													
	0.0015	215			5.0	11.0													
	0.0016	216			5.0	11.0													
	0.0018	218			5.0	11.0													
	0.0020 0.0022	220 222			5.0 5.0	11.0 11.0													
	0.0022	222			5.0	11.0													
	0.0024	227			5.0	11.0													
	0.0027	230			5.0	11.0													
	0.0030	233			5.0	11.0													
	0.0033	236			5.0	11.0													
	0.0039	239			5.0	11.0													
	0.0039	243			5.0	11.0													
	0.0043	247			5.0	11.0													
	0.0062	262			5.5	11.0													
	0.0068	268			5.5	11.0													
	0.0082	282			6.0	11.0													
	0.0082	310			5.5	14.0													
	0.015	315			6.5	14.0													
	0.013	322			7.5	14.0													

Vishay Roederstein

ELECTRICAL	ELECTRICAL DATA					
U _{RDC}	CAP.	CAPACITANCE	VOLTAGE	V	DIMEN	ISIONS
(V)	(μ F)	CODE	CODE	V _{AC}	D	L
	0.068	368			9.0	19.0
	0.10	410			8.5	26.5
	0.15	415			10.5	26.5
	0.22	422			12.0	26.5
630	0.33	433	63	250 ⁽¹⁾	14.5	26.5
	0.47	447			15.0	31.5
	0.68	468			18.0	31.5
	1.0	510			18.0	41.5
	1.5	515			22.0	41.5

Notes

- Pitch = L + 3.5 mm
- (1) Not suitable for mains applications

RECOMMENDED PACKAGING				
PACKAGING CODE	TYPE OF PACKAGING	REEL DIAMETER (mm)	ORDERING CODE EXAMPLES	
G	Ammo	-	MKP1839422403G	х
R	Reel	350	MKP1839422403R	х
-	Bulk for L > 31.5 mm	-	MKP1839522403	х

Note

• For detailed tape specifications refer to packaging information: www.vishay.com/doc?28139

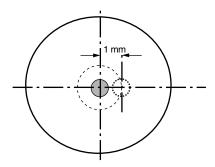
MOUNTING

Normal Use

The capacitors are designed for mounting on printed-circuit boards. The capacitors packed in bandoliers are designed for mounting in printed-circuit boards by means of automatic insertion machines.

For detailed tape specifications refer to packaging information: www.vishav.com/doc?28139

Specific Method of Mounting to Withstand Vibration and Shock


In order to withstand vibration and shock tests, it must be ensured that the capacitors body is in good contact with the printed-circuit board.

- For L < 19 mm capacitors shall be mechanically fixed by the leads
- For larger pitches the capacitors shall be mounted in the same way and the body clamped
- The maximum diameter and length of the capacitors are specified in the dimensions table
- Eccentricity as shown in the drawing below

Space Requirements on Printed-Circuit Board

The maximum length and width of film capacitors is shown in drawing:

- Eccentricity as in drawing. The maximum eccentricity is smaller than or equal to the lead diameter of the product concerned.
- Product height with seating plane as given by IEC 60717 as reference: h_{max.} ≤ h + 0.4 mm or h_{max.} ≤ h' + 0.4 mm

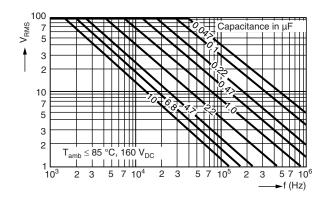
SOLDERING CONDITIONS

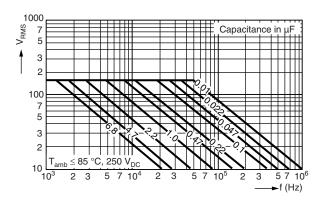
For general soldering conditions and wave soldering profile, we refer to application note:

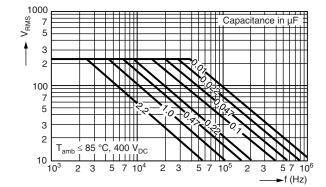
"Soldering Guidelines for Film Capacitors": www.vishay.com/doc?28171

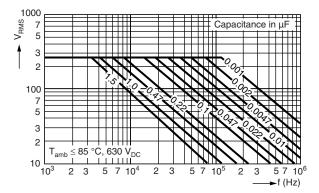
Storage Temperature

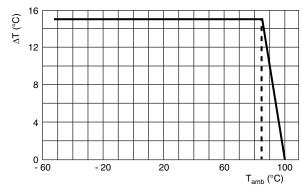
T_{sta} = - 25 °C to + 35 °C with RH maximum 75 % without condensation


Ratings and Characteristics Reference Conditions


Unless otherwise specified, all electrical values apply to an ambient temperature of 23 °C \pm 1 °C, an atmospheric pressure of 86 kPa to 106 kPa and a relative humidity of 50 % \pm 2 %.


For reference testing, a conditioning period shall be applied over 96 h \pm 4 h by heating the products in a circulating air oven at the rated temperature and a relative humidity not exceeding 20 %.


CHARACTERISTICS


MAX. RMS VOLTAGE AS A FUNCTION OF FREQUENCY

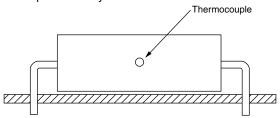
Maximum allowed component temperature rise (ΔT) as a function of the ambient temperature (T_{amb})

THICKNESS IN mW/°C						
DIAMETER			HEAT CONDUC	CTIVITY (mW/°C)		
(mm)	L = 11 mm	L = 14 mm	L = 19 mm	L = 26.5 mm	L = 31.5 mm	L = 41.5 mm
5.0	2	3	4	5	6	8
5.5	3	3	4	6	7	9
6.0	3	4	5	7	8	10
6.5	3	4	5	7	9	11
7.0	4	5	6	8	9	12
7.5	4	5	7	9	10	13
8.0	4	5	7	10	11	15
8.5	5	6	8	10	12	16
9.0	5	6	8	11	13	17
9.5	6	7	9	12	14	18
10.0	6	7	10	13	15	19
10.5	7	8	10	14	16	20
11.0	7	8	11	14	17	21
11.5	8	9	12	15	18	23
12.0	8	10	12	16	19	24
12.5	9	10	13	17	20	25
13.0	9	11	14	18	21	26
13.5	10	11	14	19	22	28
14.0	10	12	15	20	23	29
14.5	11	13	16	21	24	30
15.0	11	13	16	21	25	31
15.5	12	14	17	22	26	33
16.0	12	14	18	23	27	34
16.5	13	15	19	24	28	35
17.0	14	16	20	25	29	37
17.5	14	17	20	26	30	38
18.0	15	17	21	27	31	39
18.5	15	18	22	28	32	41
19.0	16	19	23	29	34	42
19.5	17	19	24	30	35	43
20.0	17	20	25	31	36	45
20.5	18	21	25	32	37	46
21.0	19	22	26	33	38	48
21.5	20	22	27	35	39	49
22.0	20	23	28	36	41	50
22.5	21	24	29	37	42	52
23.0	22	25	30	38	43	53
23.5	23	26	31	39	44	55
24.0	23	27	32	40	46	56
24.5	24	27	33	41	47	58
25.0	25	28	34	42	48	59
25.5	26	29	35	44	49	61
26.0	27	30	36	45	51	62
26.5	27	31	37	46	52	64
27.0	28	32	38	47	53	66
27.5	29	33	39	48	55	67
28.0	30	34	40	50	56	69
28.5	31	35	41	51	57	70

Vishay Roederstein

POWER DISSIPATION AND MAXIMUM COMPONENT TEMPERATURE RISE

The power dissipation must be limited in order not to exceed the maximum allowed component temperature rise as a function of the free air ambient temperature.


The power dissipation can be calculated according type detail specification "HQN-384-01/101: Technical Information Film Capacitors with the typical tod of the curves".

The component temperature rise (ΔT) can be measured (see section "Measuring the component temperature" for more details) or calculated by $\Delta T = P/G$:

- ΔT = Component temperature rise (°C)
- P = Power dissipation of the component (mW)
- G = Heat conductivity of the component (mW/°C)

MEASURING THE COMPONENT TEMPERATURE

A thermocouple must be attached to the capacitor body as in:

The temperature is measured in unloaded (T_{amb}) and maximum loaded condition (T_C).

The temperature rise is given by $\Delta T = T_C - T_{amb}$.

To avoid radiation or convection, the capacitor should be tested in a wind-free box.

APPLICATION NOTE AND LIMITING CONDITIONS

These capacitors are not suitable for mains applications as across-the-line capacitors without additional protection, as described hereunder. These mains applications are strictly regulated in safety standards and therefore electromagnetic interference suppression capacitors conforming the standards must be used.

To select the capacitor for a certain application, the following conditions must be checked:

- 1. The peak voltage (U_P) shall not be greater than the rated DC voltage (U_{RDC})
- 2. The peak-to-peak voltage (U_{P-P}) shall not be greater than the maximum (U_{P-P}) to avoid the ionization inception level
- The voltage peak slope (dU/dt) shall not exceed the rated voltage pulse slope in an RC-circuit at rated voltage and without ringing. If the pulse voltage is lower than the rated DC voltage, the rated voltage pulse slope may be multiplied by U_{RDC} and divided by the applied voltage.

For all other pulses following equation must be fulfilled:

$$2 \times \int_{0}^{T} \left(\frac{dU}{dt}\right)^{2} \times dt < U_{RDC} \times \left(\frac{dU}{dt}\right)_{rated}$$

T is the pulse duration.

- 4. The maximum component surface temperature rise must be lower than the limits (see graph "Max. allowed component temperature rise").
- 5. Since in circuits used at voltages over 280 V peak-to-peak the risk for an intrinsically active flammability after a capacitor breakdown (short circuit) increases, it is recommended that the power to the component is limited to 100 times the values mentioned in the table: "Heat conductivity"
- 6. When using these capacitors as across-the-line capacitor in the input filter for mains applications or as series connected with an impedance to the mains the applicant must guarantee that the following conditions are fulfilled in any case (spikes and surge voltages from the mains included).

VOLTAGE CONDITIONS FOR 6 ABOVE				
ALLOWED VOLTAGES	T _{amb} ≤ 85 °C	85 °C < T _{amb} ≤ 100 °C		
Maximum continuous RMS voltage	U _{RAC}	U _{RAC}		
Maximum temperature RMS-overvoltage (< 24 h)	1.25 x U _{RAC}	1.25 x U _{RAC}		
Maximum peak voltage (V _{O-P}) (< 2 s)	1.6 x U _{RDC}	1.1 x U _{RDC}		

INSPECTION REQUIREMENTS

General Notes

Sub-clause numbers of tests and performance requirements refer to the "Sectional Specification, Publication IEC 60384-16 and Specific Reference Data".

GROUP C INSPECTION REQUI		
SUB-CLAUSE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS
SUB-GROUP C1A PART OF SAMPLE OF SUB-GROUP C1		
4.1 Dimensions (detail)		As specified in chapter "General Data" of this specification
4.3.1 Initial measurements	Capacitance Tangent of loss angle at 100 kHz	
4.3 Robustness of terminations	Tensile and bending	No visible damage
4.4 Resistance to soldering heat	Method: 1A Solder bath: 280 °C ± 5 °C Duration: 5 s	
4.14 Component solvent resistance	Isopropylalcohol at room temperature Method: 2 Immersion time: 5 min ± 0.5 min Recovery time: Min. 1 h, max. 2 h	
4.4.2 Final measurements	Visual examination	No visible damage Legible marking
	Capacitance	$ \Delta C/C \le 2$ % of the value measured initially
	Tangent of loss angle	Increase of tan $\delta \le 0.002$ Compared to values measured in 4.3.1
SUB-GROUP C1B OTHER PART OF SAMPLE OF SUB-GROUP C1		
4.6.1 Initial measurements	Capacitance Tangent of loss angle: For C ≤ 1 µF at 10 kHz For C > 1 µF at 1 kHz	
4.15 Solvent resistance of the marking	Isopropylalcohol at room temperature Method: 1 Rubbing material: Cotton wool Immersion time: 5 min ± 0.5 min	No visible damage Legible marking
4.6 Rapid change of temperature	 θA = Lower category temperature θB = Upper category temperature 5 cycles Duration t = 30 min 	
4.7 Vibration	Visual examination Mounting: See section "Mounting" for more information Procedure B4 Frequency range: 10 Hz to 55 Hz Amplitude: 0.75 mm or Acceleration 98 m/s² (whichever is less severe) Total duration 6 h	No visible damage
4.7.2 Final inspection	Visual examination	No visible damage

	JP C INSPECTION REQUI	CONDITIONS	PERFORMANCE REQUIREMENTS
	ROUP C1B OTHER PART OF	CONDITIONS	PENFORMANCE REQUIREMENTS
	E OF SUB-GROUP C1		
4.9	Shock	Mounting: See section "Mounting" for more information Pulse shape: Half sine Acceleration: 490 m/s² Duration of pulse: 11 ms	
4.9.3	Final measurements	Visual examination	No visible damage
		Capacitance	$ \Delta C/C \le 2$ % of the value measured in 4.6.1
		Tangent of loss angle	Increase of tan $\delta \leq 0.002$ Compared to values measured in 4.6.1
		Insulation resistance	As specified in section "Insulation Resistance" of this specification
OF SPE	ROUP C1 COMBINED SAMPLE ECIMENS OF SUB-GROUPS ND C1B		
4.10	Climatic sequence		
4.10.2	Dry heat	Temperature: Upper category temperature Duration: 16 h	
4.10.3	Damp heat cyclic Test Db, first cycle		
4.10.4	Cold	Temperature: Lower category temperature Duration: 2 h	
4.10.6	Damp heat cyclic Test Db, remaining cycles	Visual examination	No visible damage Legible marking
4.10.6.2	2 Final measurements	Capacitance	$\left \Delta C/C\right \leq 3$ % of the value measured in 4.4.2 or 4.9.3
		Tangent of loss angle	Increase of tan $\delta \le 0.003$ Compared to values measured in 4.3.1 or 4.6.1
		Insulation resistance	≥ 50 % of values specified in section "Insulation Resistance" of this specification
	ROUP C2	Conscitones	
4.11	Damp heat steady state	Capacitance	
4.11.1	Initial measurements	Tangent of loss angle at 1 kHz	
4.11.3	Final measurements	Visual examination	No visible damage Legible marking
		Capacitance	$ \Delta C/C \le 3$ % of the value measured in 4.11.1
		Tangent of loss angle	Increase of tan $\delta \leq 0.001$ Compared to values measured in 4.11.1
		Insulation resistance	≥ 50 % of values specified in section "Insulation Resistance" of this specification

GROUP C INSPECTION REQU SUB-CLAUSE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS
SUB-GROUP C3	CONDITIONS	FERI ORIMANOE REGUINEMENTS
4.12 Endurance DC	Duration: 2000 h 1.25 x U _{RDC} at 85 °C 0.875 x U _{RDC} at 100 °C	
4.12.1 Initial measurements	Capacitance Tangent of loss angle: For C ≤ 1 µF at 10 kHz For C > 1 µF at 1 kHz	
4.12.5 Final measurements	Visual examination	No visible damage Legible marking
	Capacitance	$ \Delta C/C \le 3$ % compared to values measure in 4.12.1
	Tangent of loss angle	Increase of $\tan \delta \le 0.002$ Compared to values measured in 4.12.1
	Insulation resistance	≥ 50 % of values specified in section "Insulation Resistance" of this specification
SUB-GROUP C4		
4.2.6 Temperature characteristics Initial measurement Intermediate Intermediate measurements	Capacitance Capacitance at lower category temperature Capacitance at 20 °C Capacitance at upper category temperature	For - 55 °C to + 20 °C: $0 \% \le \Delta C/C \le 2 \%$ or for 20 °C to 85 °C: $-3 \% \le \Delta C/C \le 0 \%$
Final measurements	Capacitance Tangent of loss angle: For C ≤ 1 µF at 10 kHz For C > 1 µF at 1 kHz	As specified in section "Capacitance" of the specification
	Insulation resistance	As specified in section "Insulation Resistance" of this specification
4.13 Charge and discharge	10 000 cycles Charged to U_{RDC} Discharge resistance: $R = \frac{U_{RDC}}{2.5 \times C(dU/dt)}$	
4.13.1 Initial measurements	Capacitance Tangent of loss angle at 100 kHz	
4.13.3 Final measurements	Capacitance	$ \Delta C/C \le 3$ % of the value measured in 4.13
	Tangent of loss angle	Increase of $\tan\delta \le 0.003$ Compared to values measured in 4.13.1
	Insulation resistance	≥ 50 % of values specified in section "Insulation Resistance" of this specificatio

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Film Capacitors category:

Click to view products by Vishay manufacturer:

Other Similar products are found below:

F339X134748MIP2T0 750-1018 FKP1-1000160010P15 FKP1-1500160010P15 FKP1R031507E00JYSD FKP1U024707E00KYSD

82DC4100CK60J 82EC1100DQ50K PFR5101J100J11L16.5TA18 PME261JB5220KR19T0 A451GK223M040A A521HH333M035C

A561ED221M450A QXJ2E474KTPT QXL2B333KTPT R49AN347000A1K EEC2G505HQA406 B25668A6676A375 B25673A4282E140

BFC233868148 BFC2370GC222 C3B2AD44400B20K 950CQW5H-F SCD105K122A3-22 SCD155K162A3X44-F 2N3155

A571EH331M450A FKP1-2202KV5P15 FKS3-680040010P10 QXL2E473KTPT 445450-1 B25669A3996J375 46KI322000M1M

46KR415050M1K 4BSNBX4100ZBFJ MKP383510063JKP2T0 MKPY2-.02230020P15 MKT 1813-368-015 4055292001 46KN410000N1K

EEC2E106HQA405 EEC2G205HQA402 EEC2G805HQA415 82EC2150DQ50K 288P22494H101 PHE841ED6150MR17T0

B25620B118K883 B25620B158K883 BFC2370GC223 BFC237022472