MKT1817

Metallized Polyester Film Capacitors MKT Radial Potted Types

FEATURES

- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

Blocking, bypassing, filtering and timing, high frequency coupling and decoupling for fast digital and analog ICs, interference suppression in low voltage applications.

RoHS COMPLIANT halogen

QUICK REFERENCE DATA

Capacitance range	1 nF to $1.0 \mu \mathrm{~F}(\mathrm{E} 12$ series $)$
Capacitance tolerance	$\pm 20 \%(\mathrm{M}), \pm 10 \%(\mathrm{~K}), \pm 5 \%(\mathrm{~J})$
Climatic testing class according to IEC $60068-1$	$55 / 100 / 56$ for rated voltage 63 V
Reference specifications	$55 / 105 / 56$ for rated voltage $>63 \mathrm{~V}$
Dielectric	IEC $60384-2$
Electrodes	Polyester film
	Metallized
Construction	Mono construction
Encapsulation	Flame retardant plastic case and epoxy resin sealed (UL-class $94 \mathrm{~V}-0)$
Leads	Tinned wire
Marking	Manufacturer's logo/type $/ \mathrm{C}$-value/rated voltage/tolerance/date of manufacture
Rated DC voltage	$63 \mathrm{~V}_{\mathrm{DC}}, 100 \mathrm{~V}_{\mathrm{DC}}, 250 \mathrm{~V}_{\mathrm{DC}}, 400 \mathrm{~V}_{\mathrm{DC}}$
Rated AC voltage	$40 \mathrm{~V}_{\mathrm{AC}}, 63 \mathrm{~V}_{\mathrm{AC}}, 160 \mathrm{~V}_{\mathrm{AC}}, 200 \mathrm{~V}_{\mathrm{AC}}$
Rated temperature	$85{ }^{\circ} \mathrm{C}$
Maximum application temperature	$100{ }^{\circ} \mathrm{C}$ for rated voltage 63 V
Performance grade	$105{ }^{\circ} \mathrm{C}$ for rated voltage $>63 \mathrm{~V}$

Note

- For more detailed data and test requirements, contact dc-film@vishay.com

DIMENSIONS in millimeters

COMPOSITION OF CATALOG NUMBER

SPECIFIC REFERENCE DATA			
DESCRIPTION	VALUE		
Tangent of loss angle:	at 1 kHz	at 10 kHz	at 100 kHz
$\mathrm{C} \leq 0.1 \mu \mathrm{~F}$	$\leq 80 \times 10^{-4}$	$\leq 150 \times 10^{-4}$	$\leq 250 \times 10^{-4}$
$0.1 \mu \mathrm{~F}<\mathrm{C} \leq 1.0 \mu \mathrm{~F}$	$\leq 80 \times 10^{-4}$	$\leq 150 \times 10^{-4}$	-
PITCH	RATED VOLTAGE PULSE SLOPE (dU/dt) ${ }_{\text {R }}$ AT		
(mm) ${ }^{\text {(m) }}$ ($63 \mathrm{~V}_{\mathrm{DC}}$	$100 \mathrm{~V}_{\mathrm{DC}}$	$250 \mathrm{~V}_{\mathrm{DC}}$	$400 \mathrm{~V}_{\mathrm{DC}}$
5 60	110	330	630
If the maximum pulse voltage is less than the rated voltage higher $\mathrm{dV} / \mathrm{dt} \mathrm{values} \mathrm{can} \mathrm{be} \mathrm{permitted}$.			
R between leads, for $\mathrm{C} \leq 0.33 \mu \mathrm{~F}$ and $\mathrm{U}_{\mathrm{R}} \leq 100 \mathrm{~V}$	> $15000 \mathrm{M} \Omega$		
R between leads, for $\mathrm{C} \leq 0.33 \mu \mathrm{~F}$ and $\mathrm{U}_{\mathrm{R}}>100 \mathrm{~V}$	$>30000 \mathrm{M} \Omega$		
RC between leads, for $\mathrm{C}>0.33 \mu \mathrm{~F}$ and $\mathrm{U}_{\mathrm{R}} \leq 100 \mathrm{~V}$	$>5000 \mathrm{~s}$		
RC between leads, for $\mathrm{C}>0.33 \mu \mathrm{~F}$ and $\mathrm{U}_{R}>100 \mathrm{~V}$	$>10000 \mathrm{~s}$		
R between interconnecting leads and casing 100 V (foil method)	$>30000 \mathrm{M} \Omega$		
Withstanding (DC) voltage (cut off current 10 mA$)^{(1)}$; rise time $\leq 1000 \mathrm{~V} / \mathrm{s}$	$1.6 \times \mathrm{U}_{\text {RDC }}, 1 \mathrm{~min}$		
Withstanding (DC) voltage between leads and case	$2.0 \times \mathrm{U}_{\mathrm{RDC}}$, with minimum of $200 \mathrm{~V}_{\mathrm{DC}} ; 1 \mathrm{~min}$		
Maximum application temperature	$100^{\circ} \mathrm{C}$ for rated voltage 63 V $105^{\circ} \mathrm{C}$ for rated voltage $>63 \mathrm{~V}$		

Note

${ }^{(1)}$ See "Voltage Proof Test for Metalized Film Capacitors": www.vishay.com/doc?28169

ELECTRICAL DATA

URDC (V)	CAP. ($\mu \mathrm{F}$)	CAPACITANCE CODE	VOLTAGE CODE	V_{AC}	$\begin{gathered} \text { DIMENSIONS } \\ w \times \mathrm{h} \times \mathrm{I} \\ (\mathrm{~mm}) \end{gathered}$
	0.10	-410			$2.5 \times 6.5 \times 7.2$
	0.15	-415			$2.5 \times 6.5 \times 7.2$
	0.22	-422			$3.5 \times 8.0 \times 7.2$
63	0.33	-433	06	40	$3.5 \times 8.0 \times 7.2$
	0.47	-447			$3.5 \times 8.0 \times 7.2$
	0.68	-468			$4.5 \times 9.0 \times 7.2$
	1.0	-510			$6.0 \times 11.0 \times 7.2$
	0.022	-322			$2.5 \times 6.5 \times 7.2$
	0.033	-333			$2.5 \times 6.5 \times 7.2$
	0.047	-347			$2.5 \times 6.5 \times 7.2$
	0.068	-368	01	63	$2.5 \times 6.5 \times 7.2$
100	0.10	-410	01	63	$2.5 \times 6.5 \times 7.2$
	0.15	-415			$3.5 \times 8.0 \times 7.2$
	0.22	-422			$4.5 \times 9.0 \times 7.2$
	0.33	-433			$4.5 \times 9.0 \times 7.2$
	0.0033	-233			$2.5 \times 6.5 \times 7.2$
	0.0047	-247			$2.5 \times 6.5 \times 7.2$
	0.0068	-268			$2.5 \times 6.5 \times 7.2$
	0.010	-310			$2.5 \times 6.5 \times 7.2$
	0.015	-315	5		$2.5 \times 6.5 \times 7.2$
250	0.022	-322		60	$3.5 \times 8.0 \times 7.2$
	0.033	-333			$3.5 \times 8.0 \times 7.2$
	0.047	-347			$4.5 \times 9.0 \times 7.2$
	0.068	-368			$6.0 \times 11.0 \times 7.2$
	0.10	-410			$6.0 \times 11.0 \times 7.2$
	0.0033	-233			$2.5 \times 6.5 \times 7.2$
	0.0047	-247			$2.5 \times 6.5 \times 7.2$
	0.0068	-268			$2.5 \times 6.5 \times 7.2$
	0.010	-310			$2.5 \times 6.5 \times 7.2$
	0.015	-315			$2.5 \times 6.5 \times 7.2$
250	0.022	-322	25	160	$3.5 \times 8.0 \times 7.2$
	0.033	-333			$3.5 \times 8.0 \times 7.2$
	0.047	-347			$4.5 \times 9.0 \times 7.2$
	0.068	-368			$6.0 \times 11.0 \times 7.2$
	0.10	-410			$6.0 \times 11.0 \times 7.2$
400	0.0010	-210	40	200	$2.5 \times 6.5 \times 7.2$
	0.0015	-215			$2.5 \times 6.5 \times 7.2$
	0.0022	-222			$2.5 \times 6.5 \times 7.2$
	0.0033	-233			$2.5 \times 6.5 \times 7.2$
	0.0047	-247			$2.5 \times 6.5 \times 7.2$
	0.0068	-268			$2.5 \times 6.5 \times 7.2$
	0.010	-310			$3.5 \times 8.0 \times 7.2$
	0.015	-315			$3.5 \times 8.0 \times 7.2$
	0.022	-322			$4.5 \times 9.0 \times 7.2$

RECOMMENDED PACKAGING

PACKAGING CODE	TYPE OF PACKAGING	HEIGHT (H) $(\mathbf{m m})$	REEL DIAMETER $(\mathbf{m m})$	ORDERING CODE EXAMPLES	PITCH $\mathbf{5}$
G	Ammo	18.5	$\mathrm{~S}^{(1)}$	MKT1817233255G	x
W	Reel	18.5	350	MKT1817233255W	x
-	Bulk	-	-	MKT1817233255	x

Note

(1) $\mathrm{S}=$ box size $55 \mathrm{~mm} \times 210 \mathrm{~mm} \times 340 \mathrm{~mm}(\mathrm{w} \times \mathrm{h} \times \mathrm{l})$

MOUNTING

Normal Use

The capacitors are designed for mounting on printed-circuit boards. The capacitors packed in bandoliers are designed for mounting in printed-circuit boards by means of automatic insertion machines.
For detailed tape specifications refer to packaging information www.vishay.com/docs?28139

Specific Method of Mounting to Withstand Vibration and Shock

In order to withstand vibration and shock tests, it must be ensured that the stand-off pips are in good contact with the printed-circuit board.

- For pitches $\leq 15 \mathrm{~mm}$ the capacitors shall be mechanically fixed by the leads
- For larger pitches the capacitors shall be mounted in the same way and the body clamped

Space Requirements on Printed-Circuit Board

The maximum space for length ($I_{\text {max }}$.), width ($\mathrm{w}_{\text {max. }}$.) and height ($\mathrm{h}_{\text {max. }}$.) of film capacitors to take in account on the printed-circuit board is shown in the drawings.

- For products with pitch $\leq 15 \mathrm{~mm}, \Delta \mathrm{w}=\Delta \mathrm{I}=0.3 \mathrm{~mm} ; \Delta \mathrm{h}=0.1 \mathrm{~mm}$

Eccentricity defined as in drawing. The maximum eccentricity is smaller than or equal to the lead diameter of the product concerned.

SOLDERING CONDITIONS

For general soldering conditions and wave soldering profile, we refer to the document "Characteristics and Definitions Used for Film Capacitors": www.vishay.com/doc?28147

Storage Temperature

$\mathrm{T}_{\text {stg }}=-25^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$ with RH maximum 75% without condensation

Ratings and Characteristics Reference Conditions

Unless otherwise specified, all electrical values apply to an ambient free air temperature of $23{ }^{\circ} \mathrm{C} \pm 1{ }^{\circ} \mathrm{C}$, an atmospheric pressure of 86 kPa to 106 kPa and a relative humidity of $50 \% \pm 2 \%$.
For reference testing, a conditioning period shall be applied over $96 \mathrm{~h} \pm 4 \mathrm{~h}$ by heating the products in a circulating air oven at the rated temperature and a relative humidity not exceeding 20%.

CHARACTERISTICS

Capacitance as a function of ambient temperature (typical) for voltage 63 V

Max. AC voltage as a function of frequency

Vishay Roederstein

Max. AC voltage as a function of frequency

Max. AC voltage as a function of frequency

Max. AC voltage as a function of frequency

Max. AC voltage as a function of frequency

Max. AC voltage as a function of frequency

Maximum RMS Current (Sinewave) as a Function of Frequency

The maximum RMS current is defined by $\mathrm{l}_{\mathrm{ac}}=\omega \times \mathrm{C} \times \mathrm{U}_{\mathrm{ac}}$.
U_{AC} is the maximum AC voltage depending on the ambient temperature in the curves "Max. RMS voltage and AC current as a function of frequency".

(typical curve)

Max. DC and AC voltage as a function of temperature for voltage 63 V

Maximum allowed component temperature rise (ΔT) as a function of the ambient temperature $\mathrm{T}_{\text {amb }}$ for voltage 63 V

Insulation resistance as a function of the ambient temperature (typical curve)

Max. DC and AC voltage as a function of temperature for voltages $>63 \mathrm{~V}$

Maximum allowed component temperature rise ($\Delta \mathrm{T}$) as a function of the ambient temperature $T_{\text {amb }}$ for voltages $>63 \mathrm{~V}$

HEAT CONDUCTIVITY (G) AS A FUNCTION OF (ORIGINAL) PITCH AND CAPACITOR BODY THICKNESS IN mW/ ${ }^{\circ} \mathbf{C}$

$\mathbf{W}_{\text {max }}$. (mm)	HEAT CONDUCTIVITY (mW/ ${ }^{\circ} \mathrm{C}$)
	PITCH 5 mm
2.5	2.5
3.0	3.0
4.5	4.0
6.0	5.5

POWER DISSIPATION AND MAXIMUM COMPONENT TEMPERATURE RISE

The power dissipation must be limited in order not to exceed the maximum allowed component temperature rise as a function of the free ambient temperature.
The power dissipation can be calculated according type detail specification "HQN-384-01/101: Technical Information Film Capacitors".
The component temperature rise (ΔT) can be measured (see section "Measuring the Component Temperature" for more details) or calculated by $\Delta T=P / G$:

- $\Delta \mathrm{T}=$ component temperature rise $\left({ }^{\circ} \mathrm{C}\right)$
- $P=$ power dissipation of the component (mW)
- $G=$ heat conductivity of the component $\left(\mathrm{mW} /{ }^{\circ} \mathrm{C}\right)$

MEASURING THE COMPONENT TEMPERATURE

A thermocouple must be attached to the capacitor body as in:

The temperature is measured in unloaded ($\mathrm{T}_{\mathrm{amb}}$) and maximum loaded condition $\left(\mathrm{T}_{\mathrm{C}}\right)$.
The temperature rise is given by $\Delta T=T_{C}-T_{a m b}$.
To avoid radiation or convection, the capacitor should be tested in a wind-free box.

APPLICATION NOTE AND LIMITING CONDITIONS

These capacitors are not suitable for mains applications as across-the-line capacitors without additional protection, as described hereunder. These mains applications are strictly regulated in safety standards and therefore electromagnetic interference suppression capacitors conforming the standards must be used.
For capacitors connected in parallel, normally the proof voltage and possibly the rated voltage must be reduced. For information depending of the capacitance value and the number of parallel connections contact: dc-film@vishay.com
To select the capacitor for a certain application, the following conditions must be checked:

1. The peak voltage $\left(U_{P}\right)$ shall not be greater than the rated DC voltage ($U_{R D C}$)
2. The peak-to-peak voltage (U_{P-p}) shall not be greater than $2 \sqrt{ } 2 \times U_{R A C}$ to avoid the ionization inception level
3. The voltage peak slope ($\mathrm{dU} / \mathrm{dt}$) shall not exceed the rated voltage pulse slope in an RC-circuit at rated voltage and without ringing. If the pulse voltage is lower than the rated DC voltage, the rated voltage pulse slope may be multiplied by $U_{R D C}$ and divided by the applied voltage.
For all other pulses following equation must be fulfilled:
T
$2 \times \int_{0}^{T}\left(\frac{d U}{d t}\right)^{2} \times d t<U_{R D C} \times\left(\frac{d U}{d t}\right)_{\text {rated }}$
T is the pulse duration.
4. The maximum component surface temperature rise must be lower than the limits (see graph "Max. allowed component temperature rise").
5. Since in circuits used at voltages over 280 V peak-to-peak the risk for an intrinsically active flammability after a capacitor breakdown (short circuit) increases, it is recommended that the power to the component is limited to 100 times the values mentioned in the table: "Heat Conductivity"
6. When using these capacitors as across-the-line capacitor in the input filter for mains applications or as series connected with an impedance to the mains the applicant must guarantee that the following conditions are fulfilled in any case (spikes and surge voltages from the mains included).

VOLTAGE CONDITIONS FOR 6 ABOVE

ALLOWED VOLTAGES	$\mathrm{T}_{\text {amb }} \leq 85{ }^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}<\mathrm{T}_{\text {amb }} \leq 100^{\circ} \mathrm{C}$ FOR 63 V
		$85^{\circ} \mathrm{C}<\mathrm{T}_{\text {amb }} \leq 100^{\circ} \mathrm{C}$ FOR $>63 \mathrm{~V}$
Maximum continuous RMS voltage	$U_{\text {RAC }}$	See "Max. AC voltage as function of temperature" per characteristics
Maximum temperature RMS-overvoltage (<24 h)	$1.25 \times \mathrm{U}_{\text {RAC }}$	$U_{\text {RAC }}$
Maximum peak voltage ($\mathrm{V}_{\text {O-p }}$) (<2 s)	$1.6 \times \mathrm{U}_{\text {RDC }}$	$1.3 \times U_{\text {RDC }}$

Example

$\mathrm{C}=330 \mathrm{nF}-63 \mathrm{~V}$ used for the voltage signal shown in next drawing.
$U_{P-P}=40 \mathrm{~V} ; \mathrm{U}_{\mathrm{P}}=35 \mathrm{~V} ; \mathrm{T}_{1}=100 \mu \mathrm{~s} ; \mathrm{T}_{2}=200 \mu \mathrm{~s}$
The ambient temperature is $35^{\circ} \mathrm{C}$
Checking conditions:

1. The peak voltage $U_{P}=35 \mathrm{~V}$ is lower than $63 \mathrm{~V}_{\mathrm{DC}}$
2. The peak-to-peak voltage 40 V is lower than $2 \sqrt{ } 2 \times 40 \mathrm{~V}_{\mathrm{AC}}=113 \mathrm{U}_{\mathrm{P}-\mathrm{P}}$
3. The voltage pulse slope (dU/dt) $=40 \mathrm{~V} / 100 \mu \mathrm{~s}=0.4 \mathrm{~V} / \mu \mathrm{s}$

This is lower than $60 \mathrm{~V} / \mu \mathrm{s}$ (see specific reference data for each version)
4. The dissipated power is 16.2 mW as calculated with fourier terms

The temperature rise for $\mathrm{w}_{\text {max. }}=3.5 \mathrm{~mm}$ and pitch $=5 \mathrm{~mm}$ will be $16.2 \mathrm{~mW} / 3.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}=5.4^{\circ} \mathrm{C}$
This is lower than $15^{\circ} \mathrm{C}$ temperature rise at $35^{\circ} \mathrm{C}$, according figure "Max. allowed component temperature rise"
5. Not applicable
6. Not applicable

Voltage Signal

INSPECTION REQUIREMENTS

General Notes

Sub-clause numbers of tests and performance requirements refer to the "Sectional Specification, Publication IEC 60384-2 and Specific Reference Data".

GROUP C INSPECTION REQUIREMENTS			
SUB-CLAUSE NUMBER AND TEST		CONDITIONS	PERFORMANCE REQUIREMENTS
SUB-GROUP C1A PART OF SAMPLE OF SUB-GROUP C1			
4.1 Dimensions (detail) 4.3.1 Initial measurements		```Capacitance Tangent of loss angle: for C }\leq470\textrm{nF}\mathrm{ at }100\textrm{kHz for C > 470 nF at 10 kHz```	As specified in chapters "MKT370 General Data" of this specification
4.3 Robustness of terminations		Tensile and bending	No visible damage
4.4 R	Resistance to soldering heat	Method: 1A Solder bath: $280^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ Duration: 10 s	
4.14	Component solvent resistance	Isopropylalcohol at room temperature Method: 2 Immersion time: $5 \mathrm{~min} \pm 0.5 \mathrm{~min}$ Recovery time: min. 1 h , max. 2 h	
4.4.2 Final measurements		Visual examination	No visible damage Legible marking
		Capacitance	$\|\Delta \mathrm{C} / \mathrm{C}\| \leq 2 \%$ of the value measured initially
		Tangent of loss angle	Increase of $\tan \delta$: $\begin{aligned} & \leq 0.005 \text { for: } \mathrm{C} \leq 100 \mathrm{nF} \text { or } \\ & \leq 0.010 \text { for: } 100 \mathrm{nF}<\mathrm{C} \leq 220 \mathrm{nF} \text { or } \\ & \leq 0.015 \text { for: } 220 \mathrm{nF}<\mathrm{C} \leq 470 \mathrm{nF} \text { or } \\ & \leq 0.003 \text { for: } \mathrm{C}>470 \mathrm{nF} \end{aligned}$ Compared to values measured in 4.3.1
SUB-GROUP C1B OTHER PART OF SAMPLE OF SUB-GROUP C1			
4.6.1 Initial measurements		```Capacitance Tangent of loss angle: for \(\mathrm{C} \leq 470 \mathrm{nF}\) at 100 kHz for \(\mathrm{C}>470 \mathrm{nF}\) at 10 kHz```	
4.6	Rapid change of temperature	$\begin{aligned} & \theta \mathrm{A}=-55^{\circ} \mathrm{C} \\ & \theta \mathrm{~B}=+100^{\circ} \mathrm{C} \\ & 5 \text { cycles } \\ & \text { Duration } \mathrm{t}=30 \mathrm{~min} \end{aligned}$	
4.7	Vibration	Visual examination Mounting: see section "Mounting" of this specification Procedure B4 Frequency range: 10 Hz to 55 Hz Amplitude: 0.75 mm or Acceleration $98 \mathrm{~m} / \mathrm{s}^{2}$ (whichever is less severe) Total duration 6 h	No visible damage

GROUP C INSPECTION REQUIREMENTS

GROUP C INSPECTION REQUIREMENTS

SUB-CLAUSE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS
SUB-GROUP C2		
4.11 Damp heat steady state 4.11.1 Initial measurements 4.11.3 Final measurements	56 days, $40^{\circ} \mathrm{C}, 90 \%$ to $95 \% \mathrm{RH}$ Capacitance Tangent of loss angle at 1 kHz Voltage proof $=U_{R D C}$ for 1 min within 15 min after removal from testchamber Visual examination Capacitance Tangent of loss angle Insulation resistance	No breakdown or flash-over No visible damage Legible marking $\|\Delta \mathrm{C} / \mathrm{C}\| \leq 5 \%$ of the value measured in 4.11.1. Increase of $\tan \delta: \leq 0.005$ Compared to values measured in 4.11.1 $\geq 50 \%$ of values specified in section "Specific Reference Data 370" of this specification
SUB GROUP C3		
4.12 Endurance 4.12.1 Initial measurements 4.12.5 Final measurements	Duration: 2000 h $1.25 \times \mathrm{U}_{\mathrm{RDC}}$ at $85^{\circ} \mathrm{C}$ $0.8 \times 1.25 \mathrm{U}_{\mathrm{RDC}}$ at $100^{\circ} \mathrm{C}$ for rated voltage 63 V $0.8 \times 1.25 \mathrm{U}_{\mathrm{RDC}}$ at $105^{\circ} \mathrm{C}$ for rated voltage $>63 \mathrm{~V}$ Capacitance Tangent of loss angle: for $\mathrm{C} \leq 470 \mathrm{nF}$ at 100 kHz for $\mathrm{C}>470 \mathrm{nF}$ at 10 kHz Visual examination Capacitance Tangent of loss angle Insulation resistance	No visible damage Legible marking $\|\Delta C / C\| \leq 5 \%$ compared to values measured in 4.12.1 Increase of $\tan \delta$: $\begin{aligned} & \leq 0.005 \text { at } 85^{\circ} \mathrm{C} \\ & \leq 0.010 \text { at } 100^{\circ} \mathrm{C} \text { for: } \mathrm{C} \leq 220 \mathrm{nF} \text { or } \\ & \leq 0.015 \text { for: } 220 \mathrm{nF}<\mathrm{C} \leq 470 \mathrm{nF} \text { or } \\ & \leq 0.003 \text { for: } \mathrm{C}>470 \mathrm{nF} \end{aligned}$ Compared to values measured in 4.12.1 $\geq 50 \%$ of values specified in section "Specific Reference Data 370" of this specification

GROUP C INSPECTION REQUIREMENTS

SUB-CLAUSE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS
SUB-GROUP C4		
4.13 Charge and discharge	10000 cycles Charged to $U_{R D C}$ Discharge resistance: $\mathrm{R}=\frac{\mathrm{U}_{\mathrm{R}}}{\mathrm{C} \times 2.5 \times(\mathrm{dU} / \mathrm{dt})_{\mathrm{R}}}$	
4.13.1 Initial measurements	Capacitance Tangent of loss angle: for $\mathrm{C} \leq 470 \mathrm{nF}$ at 100 kHz for $\mathrm{C}>470 \mathrm{nF}$ at 10 kHz	
4.13.3 Final measurements	Capacitance	$\|\Delta \mathrm{C} / \mathrm{C}\| \leq 3 \%$ compared to values measured in 4.13.1
	Tangent of loss angle	$\begin{aligned} & \text { Increase of } \tan \delta \text { : } \\ & \leq 0.005 \text { for: } \mathrm{C} \leq 100 \mathrm{nF} \text { or } \\ & \leq 0.010 \text { for: } 100 \mathrm{nF}<\mathrm{C} \leq 220 \mathrm{nF} \text { or } \\ & \leq 0.015 \text { for: } 220 \mathrm{nF}<\mathrm{C} \leq 470 \mathrm{nF} \text { or } \\ & \leq 0.003 \text { for: } \mathrm{C}>470 \mathrm{nF} \end{aligned}$ Compared to values measured in 4.13.1
	Insulation resistance	≥ 50 \% of values specified in section "Specific Reference Data 370" of this specification

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Film Capacitors category:
Click to view products by Vishay manufacturer:

Other Similar products are found below :
F450KG153J250ALH0J 750-1018 FKP1-1000160010P15 FKP1-1500160010P15 82EC1100DQ50K MMWAF150KME PFR5101J100J11L16.5TA18 PME261JB5220KR19T0 A521HH333M035C QXJ2E474KTPT QXL2B333KTPT QXM2G104K DMT2P22 EEC2G505HQA406 B32520C6332K000 B32522C6104K000 B32523Q3155J B32676E6755K C3B2AD44400B20K KP1830-247/061-G

SCD105K122A3-22 2N3155 F601BL225K063CL60A FKP1-2202KV5P15 FKS3-680040010P10 445450-1 B32523Q0475K000 46KR415050M1K 4BSNBX4100ZBFJ 4DCNAQ4450ZA0J MKP383510063JKP2T0 MKT 1813-368-015 MKT182022263473 4055292001 WMC08P22 WMF1S15 WMF4S68 EEC2E106HQA405 EEC2G805HQA415 82DC3100DQ50J 82EC2150DQ50K WMF4D68 WMF1D68 B25620B118K883 B25620B158K883 A521HH471M450C 97F8038 NRM-S225K250F 730P205X9400 P42DB8483AA00F

