MSP

Thick Film Resistor Networks, Single-In-Line, Molded SIP

FEATURES

- Isolated, bussed, and dual terminator schematics available
- 0.195" (4.95 mm) "A" or 0.350 " (8.89 mm) "C" maximum seated height
- Thick film resisitive elements
- Low temperature coefficient $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ $\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- Rugged, molded case construction
- Reduces total assembly costs
- Compatible with automatic insertion equipment and reduces PC board space
- Wide resistance range (10Ω to $2.2 \mathrm{M} \Omega$)
- Available in tube pack
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

Note

* This datasheet provides information about parts that are RoHS-compliant and/or parts that are non-RoHS-compliant. For example, parts with lead (Pb) terminations are not RoHS-compliant. Please see the information/tables in this datasheet for details.

STANDARD ELECTRICAL SPECIFICATIONS

GLOBAL MODEL/ SCHEMATIC	PROFILE	POWER RATING ELEMENT $P_{70}{ }^{\circ} \mathrm{C}$ W	RESISTANCE RANGE Ω	$\underset{ \pm \%}{\text { TOLERANCE }}{ }^{(2)}$	$\begin{gathered} \text { TEMPERATURE } \\ \text { COEFFICIENT } \\ \left(-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}\right) \\ \pm \mathrm{ppm} / /^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \text { TCR } \\ \text { TRACKING }{ }^{(1)} \\ \left(-55^{\circ} \mathrm{C} \text { to }+125^{\circ}{ }^{\circ} \mathrm{C}\right) \\ \pm \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{gathered}$	MAXIMUM WORKING VOLTAGE ${ }^{(3)}$ $V_{D C}$
MSPxxx01	A	0.20	10 to 2.2M	1, 2, 5	100	50	100
MSPxxx01	C	0.25	10 to 2.2M	1, 2, 5	100	50	100
MSPxxx03	A	0.30	10 to 2.2M	1, 2, 5	100	50	100
MSPxxx03	C	0.40	10 to 2.2M	1, 2, 5	100	50	100
MSPxxx05	A	0.20	10 to 2.2M	1, 2, 5	100	150	100
MSPxxx05	C	0.25	10 to 2.2M	1, 2, 5	100	150	100

Notes

(1) Tighter tracking available
(2) $\pm 2 \%$ standard, $\pm 1 \%$ and $\pm 5 \%$ available
(3) Continuous working voltage shall be $\sqrt{P \times R}$ or maximum working voltage, whichever is less

GLOBAL PART NUMBER INFORMATION

New Global Part Numbering: MSP06A031K00GDA (preferred part numbering format)

New Global Part Numbering: MSP08C05131AGDA (preferred part numbering format)

Note

- For additional information on packaging, refer to the Through-Hole Network Packaging document (www.vishay.com/doc?31542).

DIMENSIONS in inches (millimeters)

GLOBAL MODEL	A (Max.)	B	C	D (Max.)
MSP06	$0.590(14.99)$	$0.500(12.70)$	5	MSPxxA $=0.195(4.95)$ MSP08
MSPxxC $=0.350(8.89)$				
MSP10	$0.790(20.07)$	$0.700(17.78)$	7	
MSP09	$0.990(25.15)$	$0.900(22.86)$	9	8

TECHNICAL SPECIFICATIONS				UNIT	MSP SERIES
PARAMETER		See Derating Curves			
Package Power Rating Maximum at $+25^{\circ} \mathrm{C}$ and $+70^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {eff }}$	<50 ppm typical			
Voltage Coefficient of Resistance	V_{AC}	200			
Dielectric Strength	Ω	$>100 \mathrm{M}$			
Isolation Resistance (03 Schematic)	${ }^{\circ} \mathrm{C}$	-55 to +125			
Operating Temperature Range	${ }^{\circ} \mathrm{C}$	-55 to +150			
Storage Temperature Range					

MECHANICAL SPECIFICATIONS	
Marking Resistance to Solvents	Permanency testing per MIL-STD-202, Method 215
Solderability	Per MIL-STD-202, Method 208E, RMA flux
Body	Molded epoxy
Terminals	Copper alloy, solder plated
	MSP06A $=0.4 \mathrm{~g}$
Weight	MSP08A $=0.5 \mathrm{~g}$
	MSP09A $=0.55 \mathrm{~g}$

IMPEDANCE CODES					
CODE	$\mathbf{R}_{\mathbf{1}}(\Omega)$	$\mathbf{R}_{\mathbf{2}}(\Omega)$	CODE	$\mathbf{R}_{\mathbf{1}}(\boldsymbol{\Omega})$	$\mathbf{R}_{\mathbf{2}}(\Omega)$
500 B	82	130	141 A	270	270
750 B	120	200	181 A	330	390
800 C	130	210	191 A	330	470
990 A	160	260	221 B	330	680
101 C	180	240	281 B	560	560
111 C	180	270	381 B	560	1.2 K
121 B	180	390	501 C	620	2.7 K
121 C	220	270	102 A	1.5 K	3.3 K
131 A	220	330	202 B	3 K	6.2 K

Note

- For additional impedance codes, refer to the Dual Terminator Impedance Code Table document (www.vishay.com/doc?31530).

MSP

CIRCUIT APPLICATIONS	
01 Schematic	$5,7,8{ }^{(1)}$, or 9 resistors with one pin common The MSPxxx01 circuit contains $5,7,8{ }^{(1)}$, or 9 nominally equal resistors, each connected between a common pin (pin no. 1) and a discrete PC board pin. Commonly used in the following applications: - "Wired OR" Pull-up - MOS/ROM Pull-up/Pull-down - Power Gate Pull-up - Open Collector Pull-up - TTL Input Pull-down Note ${ }^{(1)}$ Available in "A" Profile only Standard E-24 resistance values stocked. Consult factory.
03 Schematic	3,4 or 5 isolated resistors The MSPxxx03 circuit contains 3 , 4 , or 5 resistors of nominally equal value in a compact package. Each resistor is connected to two discrete PC pins. Standard E-24 resistance values stocked. Consult factory.
	Pulse squaring and TTL dual-line terminators The MSPxxx05 circuits contain 4, 6, $7^{(2)}$, or 8 series pair of resistors. Each series pair is connected between two common lines. The junction of these resistor pairs is connected to the input terminals. The 05 circuits are designed for TTL dual-line termination and pulse squaring. Note ${ }^{(2)}$ Available in "A" Profile only Many dual terminator resistance values stocked. Consult factory.

DERATING

"C" Profile

MSP

"A" PROFILE +70 ${ }^{\circ} \mathbf{C}$ PACKAGE RATINGS	
MSP10A	1.25 W
MSP09A	1.12 W
MSP08A	1.00 W
MSP06A	0.75 W

"C" PROFILE +70 ${ }^{\circ} \mathbf{C}$ PACKAGE RATINGS	
MSP10C	1.60 W
MSP08C	1.30 W
MSP06C	1.00 W

Note

- Higher power ratings available. Contact factory.

PERFORMANCE		
TEST	CONDITIONS	MAX. ΔR (TYPICAL TEST LOTS)
Power Conditioning	1.5 x rated power, applied 1.5 h "ON" and 0.5 h "OFF" for $100 \mathrm{~h} \pm 4 \mathrm{~h}$ at $+25^{\circ} \mathrm{C}$ ambient temperature	± 0.50 \% ΔR
Thermal Shock	5 cycles between $-65^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$	± 0.50 \% ΔR
Short Time Overload	$2.5 \times$ rated working voltage 5 s	± 0.25 \% ΔR
Low Temperature Operation	45 min at full rated working voltage at $-65^{\circ} \mathrm{C}$	± 0.25 \% ΔR
Moisture Resistance	240 h with humidity ranging from $80 \% \mathrm{RH}$ to $98 \% \mathrm{RH}$	$\pm 0.50 \% \Delta R$
Resistance to Soldering Heat	Leads immersed in $+260^{\circ} \mathrm{C}$ solder to within $1 / 16^{\prime \prime}$ of device body for 10 s	± 0.25 \% ΔR
Shock	Total of 18 shocks at 100 g 's	± 0.25 \% ΔR
Vibration	12 h at maximum of 20 g 's between 10 Hz and 2000 Hz	± 0.25 \% ΔR
Load Life	1000 h at $+70^{\circ} \mathrm{C}$, rated power applied 1.5 h "ON", 0.5 h "OFF" for full 1000 h period. Derated according to the curve.	$\pm 1.00 \% \Delta R$
Terminal Strength	4.5 pound pull for 30 s	± 0.25 \% ΔR
Insulation Resistance	$10000 \mathrm{M} \Omega$ (minimum)	-
Dielectric Withstanding Voltage	-	-

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Resistor Networks \& Arrays category:

Click to view products by Vishay manufacturer:

Other Similar products are found below :
CS6600552K000B8768 CSC06A0122K0GEJ CSC08A01470KGEK M8340105K1002FGD03 M8340106MA010FHD03
M8340107K1471FGD03 M8340108K1001FCD03 M8340108K2402GGD03 M8340108K3240FGD03 M8340108K3242FGD03
M8340108K3322FCD03 M8340108K4991FGD03 M8340108K6202GGD03 M8340109K2002FCD03 M8340109M4701GCD03 EXB-
24N121JX EXB-24N330JX EXB-24N470JX EXB-A10E102J EXB-A10E104J 744C083101JTR EXB-U14360JX EXB-U18240JX EXB-
U18390JX MDP1603100KGE04 PRA100I2-1KBWNW GUS-SS4-BLF-01-1002-G ACAS06S0830339P100 ACAS06S0830343P100
ACAS06S0830344P100 RM2012A-102/104-PBVW10 RM2012A-102503-PBVW10 RM2012A-502104-PBVW10 RM3216B-102302-
PBVW10 L091S102LF ACAS06S0830341P100 ACAS06S0830342P100 ACAS06S0830345P100 EXB-14V300JX EXB-U14220JX EXB-
U14470JX EXB-U18330JX EXB-V4N100JV EXB-V8V220GV PRA100I2-10KBWN PRA100I4-10KBWN CSC09A014K70JEK
M8340102M4701JAD04 M8340105K1002GGD03 M8340105M1001JCD03

