OCT 0603, OCU 0805

Vishay Beyschlag

FEATURES

- Unique very high ohmic chip resistor product
- Standard TCR: ± 100 ppm/K
- Excellent overall stability
- Low voltage coefficient: 0.05 %/V
- Wide high ohmic range: > 10 M Ω to 130 M Ω
- Lead (Pb)-free solder contacts
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

- Any kind of battery driven electronics
- Low consumption CMOS circuitry
- Small signal measurement

TECHNICAL SPECIFICATIONS			
DESCRIPTION	OCT 0603	OCU 0805	
DIN size	0603	0805	
Metric CECC size	RR 1608M	RR 2012M	
Resistance range	11 M Ω to 130 M Ω	11 M Ω to 130 M Ω	
Resistance tolerance	± 5	%	
Temperature coefficient	± 250 ppm/K; ± 100 ppm/K		
Rated dissipation, P ₇₀ ⁽¹⁾	Limited by U _{max.}		
Operating voltage, U _{max.} AC/DC	150 V	200 V	
Permissible film temperature, 9 _{F max.} ⁽¹⁾	155 °C		
Operating temperature range	-55 °C to 155 °C	-55 °C to 155 °C	
Permissible voltage against ambient (insulation):			
1 min; U _{ins}	100 V	200 V	
Continuous	75 V	75 V	
Failure rate: FITobserved	≤0.1 x	10 ⁻⁹ /h	

Note

⁽¹⁾ Please refer to APPLICATION INFORMATION below.

APPLICATION INFORMATION

The power dissipation on the resistor generates a temperature rise against the local ambient, depending on the heat flow support of the printed-circuit board (thermal resistance). The rated dissipation applies only if the permitted film temperature is not exceeded. Furthermore, a high level of ambient temperature or of power dissipation may raise the temperature of the solder joint, hence special solder alloys or board materials may be required to maintain the reliability of the assembly.

These resistors do not feature a limited lifetime when operated within the permissible limits. However, resistance value drift increasing over operating time may result in exceeding a limit acceptable to the specific application, thereby establishing a functional lifetime. At the maximum permissible film temperature of 155 °C the useful lifetime is specified for 8000 h. The designer may estimate the performance of the particular resistor application or set certain load and temperature limits in order to maintain a desired stability.

OCT 0603 and OCU 0805 high ohmic flat chip resistors are best suited where high resistance, high stability and high reliability are required. Typical applications include any kind of battery driven electronics, particularly low consumption CMOS circuitry.

ict (

Vishay Beyschlag

MAXIMUM RESISTANCE CHANGE AT RATED DISSIPATION						
OPERATIONE MODE		STANDARD	POWER			
	OCT 0603	75 V	150 V			
Operating voltage, Omax. AORMS/DO	OCU 0805	150 V	200 V			
Operating temperature range		-55 °C to 125 °C	-55 °C to 155 °C			
Permissible film temperature, $g_{\rm Fmax.}$		125 °C	155 °C			
Climatic category (LCT / UCT / days)		55 / 125 / 56	55 / 155 / 56			
	OCT 0603	11 M Ω to 47 M Ω	11 M Ω to 47 M Ω			
Max. resistance change at P_{70}	OCU 0805	11 M Ω to 47 M Ω	11 M Ω to 47 M Ω			
$ \Delta R/R $ max., after:	1000 h	≤ 1 %	≤ 2 %			
	8000 h	≤2 %	≤ 4 %			
Specified lifetime		800	00 h			

TEMPERATURE COEFFICIENT AND RESISTANCE RANGE						
TYPE/SIZE	TCR	TOLERANCE	RESISTANCE	E-SERIES		
OCT 0603	± 250 ppm/K		51 M Ω to 130 M Ω			
	± 100 ppm/K	. 5.0/	11 M Ω to 47 M Ω	E04		
OCT 0805	± 250 ppm/K	± 5 %	51 M Ω to 130 M Ω	E24		
	± 100 ppm/K		11 M Ω to 47 M Ω			

PACKAGING								
TYPE / SIZE	CODE	QUANTITY	CARRIER TAPE	WIDTH	PITCH	REEL DIAMETER		
OCT 0603	P5	5000		8 mm	4 mm	180 mm/7"		
	PW	20 000	Paper tape acc.			330 mm/13"		
OCT 0805	P5	5000	IEC 60286-3 Type 1a	8 mm	4 mm	180 mm/7"		
	PW	20 000		0 11111	4 11111	330 mm/13"		

Note

Products can be ordered using either the PRODUCT DESCRIPTION or the PART NUMBER.

2

DESCRIPTION

Production is strictly controlled and follows an extensive set of instructions established for reproducibility. A newly developed cermet layer is deposited on a high grade (Al_2O_3) ceramic substrate and conditioned to achieve the desired temperature coefficient. Inner contacts are built on both sides of the substrate. A special laser is used to achieve the target value by smoothly cutting the resistive layer without damaging the ceramics. The resistor elements are covered by a protective coating designed for electrical, mechanical and climatic protection. The terminations receive a final pure tin on nickel plating.

The result of the determined production is verified by an extensive testing procedure and optical inspection performed on 100 % of the individual chip resistors. Only accepted products are laid directly into the paper tape in accordance with **IEC 60286-3** ⁽²⁾.

ASSEMBLY

The resistors are suitable for processing on automatic SMD assembly systems. They are suitable for automatic soldering using wave, reflow or vapor phase as shown in **IEC 61760-1** ⁽²⁾. The encapsulation is resistant to all cleaning solvents commonly used in the electronics industry, including alcohols, esters and aqueous solutions. The suitability of conformal coatings, if applied, shall be qualified by appropriate means to ensure the long-term stability of the whole system.

OCT 0603, OCU 0805

Vishay Beyschlag

The resistors are RoHS-compliant; the pure tin plating provides compatibility with lead (Pb)-free and lead-containing soldering processes. Solderability is specified for 2 years after production or requalification. The permitted storage time is 20 years. The immunity of the plating against tin whisker growth has been proven under extensive testing.

All products comply with the **IEC 62474**, Material Declaration for Products of and for the Electrotechnical Industry.

The dedicated database ⁽¹⁾, that list declarable substances, ensures full compliance with the following directives:

- 2000/53/EC End of Vehicle life Directive (ELV) and Annex II (ELV II)
- 2011/65/EU Restriction of the use of Hazardous Substances directive (RoHS)
- 2012/19/EU Waste Electrical and Electronic Equipment Directive (WEEE)

APPROVALS

The resistors are tested in accordance with **EN 140401-802** which refers to **EN 60115-1** and **EN 140400**. The detail specification refers to the climatic category 55/125/56, which relates to the "Standard operation mode" of this datasheet.

Vishay Beyschlag has achieved "Approval of Manufacturer" in accordance with EN 100114-1.

Notes

⁽¹⁾ IEC 62474 database can be found at <u>http://std.iec.ch/iec62474</u>.

⁽²⁾ The quoted IEC standards are also released as EN standards with the same number and identical contents.

OCT 0603, OCU 0805

Vishay Beyschlag

TEST AND REQUIREMENTS

All tests are carried out in accordance with the following specifications:

EN 60115-1, generic specification (includes tests)

EN 140400, sectional specification (includes schedule for qualification approval)

EN 140401-802, detail specification (includes schedule for conformance inspection)

The components are approved in accordance with the European CECC-system, where applicable. The following table contains only the most important tests. For the full test schedule refer to the documents listed above. The testing also covers most of the requirements specified by EIA/IS-703 and JIS-C-5202.

The tests are carried out in accordance with IEC 60068 and under standard atmospheric conditions in accordance with IEC 60068-1, 5.3. Climatic category LCT/UCT/56 (rated

temperature range: Lower category temperature, upper category temperature; damp heat, long term, 56 days) is valid.

Unless otherwise specified the following values apply:

Temperature: 15 °C to 35 °C

Relative humidity: 45 % to 75 %

Air pressure: 86 kPa to 106 kPa (860 mbar to 1060 mbar).

The components are mounted for testing on boards in accordance with EN 60115-1, 4.31 unless otherwise specified.

The requirements stated in the Test Procedures and Requirements table are based on the required tests and permitted limits of EN 140401-802. However, some additional tests and a number of improvements against those minimum requirements have been included.

TEST PROCEDURES AND REQUIREMENTS						
EN 60115-1 CLAUSE	IEC 60068-2 TEST METHOD	TEST	PROCEDURE	REQUIREMENTS PERMISSIBLE CHANGE (∆ <i>R/R</i>)		
			Stability for product types:			
			OCT 0603	11 M Ω to 130 M Ω		
			OCU 0805	11 M Ω to 130 M Ω		
4.5	-	Resistance	<i>U</i> = 100 V	± 5 %		
4.8.4.2	-	Temperature coefficient	At (20 / -55 / 20) °C and (20 / 125 / 20) °C	± 250 ppm/K; ± 100 ppm/K		
4.25.1	-	Endurance at 70 °C:	U = U _{max.} ; 1.5 h on; 0.5 h off; 70 °C: 1000 h	. 1 0/		
		standard operation mode	70°C, 1000 h	± 1 %		
			70 °C; 8000 h	±2%		
4.25.3	_	Endurance at upper	125 °C; 1000 h	±2%		
		category temperature	155 °C; 1000 h	±3%		
4.24	78 (Cab)	Damp heat, steady state	(40 ± 2) °C; 56 days; (93 ± 3) % RH	±1%		
4.23		Climatic sequence:				
4.23.2	2 (Ba)	Dry heat	UCT; 16 h			
4.23.3	30 (Db)	Damp heat, cyclic	55 °C; 24 h; > 90 % RH; 1 cycle			
4.23.4	1 (Aa)	Cold	LCT; 2 h			
4.23.5	13 (M)	Low air pressure	8.5 kPa; 2 h; (25 ± 10) °C			
4.23.6	30 (Db)	Damp heat, cyclic	55 °C; 5 days; > 95 to 100 % RH; 5 cycles LCT = - 55 °C; UCT = 125 °C	± 1 % no visible damage		
-	1 (Aa)	Cold	- 55 °C; 2 h	± 0.5 %		

Г

www.vishay.com

OCT 0603, OCU 0805

Vishay Beyschlag

TEST PROCEDURES AND REQUIREMENTS							
EN 60115-1 CLAUSE	IEC 60068-2 TEST METHOD	TEST	PROCEDURE	REQUIREMENTS PERMISSIBLE CHANGE (∆ <i>R/R</i>)			
			Stability for product types:				
			OCT 0603	11 M Ω to 130 M Ω			
			OCU 0805	11 M Ω to 130 M Ω			
			30 min at LCT and 30 min at UCT;				
4.19	14 (Na)	Rapid change of temperature	LCT = -55 °C; UCT = 125 °C; 5 cycles	± 0.5 % no visible damage			
			LCT = -55 °C; UCT = 125 °C; 1000 cycles	± 1 % no visible damage			
4.13	-	Short time overload	U = 2 x <i>U</i> _{max.} ; 5 s	± 0.5 %			
4.27	-	Single pulse high voltage overload; standard operation mode	Severity no. 4, <i>U</i> = 2 x <i>U</i> _{max.} ; 10 pulses 10 μs/700 μs	± 1 % no visible damage			
4.22	6 (Fc)	Vibration	Endurance by sweeping; 10 Hz to 2000 Hz; no resonance; amplitude \leq 1.5 mm or \leq 200 m/s ² ; 6 h	± 0.5 % no visible damage			
4.17.2 58 (Td) Solderability		Soldorability	Solder bath method; SnPb40; non-activated flux (215 \pm 3) °C; (3 \pm 0.3) s	Good tinning (> 95 % covered);			
		Solderability	Solder bath method; SnAg3Cu0.5 or SnAg3.5; non-activated flux (235 ± 3) °C; (2 ± 0.2) s	no visible damage			
4.18.2	58 (Td)	Resistance to soldering heat	Solder bath method; (260 \pm 5) °C; (10 \pm 1) s	± 0.5 % no visible damage			
4.29	45 (XA)	Component solvent resistance	Isopropyl alcohol + 50 °C; method 2	No visible damage			
4 20	21 (110.)	Shoor (adhasian)	RR 1608M; 9 N	No visible demoge			
4.32	21 (Ue ₃)	Shear (adhesion)	RR 2012M; 45 N	No visible damage			
4.33	21 (Ue ₁)	Substrate bending	Depth 2 mm, 3 times	\pm 0.5 % no visible damage, no open circuit in bent position			
4.7	-	Voltage proof	$U_{\rm RMS} = U_{\rm ins};$ (60 ± 5) s	No flashover or breakdown			
4.35	-	Flammability	IEC 60695-2-2, needle flame test; 10 s	No burning after 30 s			

5

Vishay Beyschlag

DIMENSIONS

DIMENSIONS AND MASS								
TYPE	H (mm)	L (mm)	W (mm)	W _T (mm)	T ₁ (mm)	T2 (mm)	MASS (mg)	
OCT 0603	0.45 + 0.1/- 0.05	1.55 ± 0.05	0.85 ± 0.1	> 75 % of W	0.3 + 0.15/- 0.2	0.3 + 0.15/- 0.2	1.9	
OCU 0805	0.45 + 0.1/- 0.05	2.0 ± 0.1	1.25 ± 0.15	> 75 % of W	0.4 + 0.1/- 0.2	0.4 + 0.1/- 0.2	4.6	

SOLDER PAD DIMENSIONS

RECOMMENDED SOLDER PAD DIMENSIONS								
-		WAVE SO	WAVE SOLDERING			REFLOW SOLDERING		
ТҮРЕ	G (mm)	Y (mm)	X (mm)	Z (mm)	G (mm)	Y (mm)	X (mm)	Z (mm)
OCT 0603	0.55	1.10	1.10	2.75	0.65	0.70	0.95	2.05
OCU 0805	0.80	1.25	1.50	3.30	0.90	0.90	1.40	2.70

Note

• The rated dissipation applies only if the permitted film temperature is not exceeded. Furthermore, a high level of ambient temperature or of power dissipation may raise the temperature of the solder joint, hence special solder alloys or board materials may be required to maintain the reliability of the assembly.

Specified power rating above 125 °C requires dedicated heat-sink pads, which depend on board materials.

The given solder pad dimensions reflect the considerations for board design and assembly as outlined e.g. in standards IEC 61188-5-x, or in publication IPC-7351. They do not guarantee any supposed thermal properties, particularly as these are also strongly influenced by many other parameters.

Still, the given solder pad dimensions will be found adequate for most general applications, e.g. those referring to "standard operation mode". Please note however that applications for "power operation mode" require special considerations for the design of solder pads and adjacent conductor areas.

OCT 0603, OCU 0805

Vishay Beyschlag

12NC INFORMATION FOR HISTORICAL CODING REFERENCE ONLY

- The resistors have a 12 digit numeric code starting with 2312.
- The subsequent 4 digits indicate the resistor type, specification and packaging; see the 12NC table.
- The remaining 4 digits indicate the resistance value:
 - The first 3 digits indicate the resistance value.
 - The last digit indicates the resistance decade in accordance with the 12NC indicating resistance decade table.

Last digit of 12NC indicating resistance decade

RESISTANCE DECADE	LAST DIGIT		
10 M Ω to 99.9 M Ω	6		

Last two digits indicating sequential code number

RESISTANCE VALUE	LAST DIGITS
100 MΩ	01
110 MΩ	02
120 MΩ	03
130 MΩ	04

12NC example

The 12NC of a OCT 0603 resistor, value 51 M Ω and TC 250 with \pm 5 % tolerance, supplied in cardboard tape of 20 000 units per reel is: 2312 209 35106.

The 12NC of a OCT 0603 resistor, value 130 M Ω and TC 250 with \pm 5 % tolerance, supplied in cardboard tape of 5000 units per reel is: 2312 219 90104.

12NC - Resistor type and packaging								
	CODE 2312							
DESCRIPTION				CARDBOARD	TAPE ON REEL			
TYPE	TCR	TOL.	RESISTANCE VALUE	P5 5000 UNITS	PW 20 000 UNITS			
	± 250 ppm/K		. 050 ppm///	. 5.0/	51 M Ω to 91 M Ω	219 3	209 3	
OCT 0603 ± 250 ppm/K ± 100 ppm/K		± 5 %	\geq 100 M Ω $^{(1)}$	219 901	209 901			
	±5%	11 M Ω to 47 M Ω	219 3	209 3				
OCU 0805 ± 250 ppm/K ± 100 ppm/K	5.07	51 M Ω to 91 M Ω	259 3	249 3				
	± 250 ppm/K	± 5 %	\geq 100 M Ω $^{(1)}$	259 901	249 901			
	± 100 ppm/K	±5%	11 M Ω to 47 M Ω	259 3	249 3			

Note

⁽¹⁾ Readable coding of resistance values is restricted to values below 100 M Ω . For resistance values from 100 M Ω onwards, refer to the pre-defined table of non-readable sequential numbers above.

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Multilayer Ceramic Capacitors MLCC - SMD/SMT category:

Click to view products by Vishay manufacturer:

Other Similar products are found below :

M39014/01-1467 M39014/02-1218V M39014/02-1225V M39014/02-1262V M39014/02-1301 M39014/22-0631 1210J5000102JCT 1210J2K00102KXT 1210J5000103KXT 1210J5000223KXT D55342E07B379BR-TR D55342E07B523DR-T/R 1812J1K00103KXT 1812J1K00473KXT 1812J2K00680JCT 1812J4K00102MXT 1812J5000102JCT 1812J5000103JCT 1812J5000682JCT NIN-FB391JTRF NIN-FC2R7JTRF NPIS27H102MTRF C1206C101J1GAC C1608C0G1E472JT000N C2012C0G2A472J 2220J2K00101JCT KHC201E225M76N0T00 LRC-LRF1206LF-01R025FTR1K 1812J1K00222JCT 1812J2K00102KXT 1812J2K00222KXT 1812J2K00472KXT 2-1622820-7-CUT-TAPE 2220J3K00102KXT 2225J2500824KXT CCR07CG103KM CGA2B2C0G1H010C CGA2B2C0G1H040C CGA2B2C0G1H050C CGA2B2C0G1H060D CGA2B2C0G1H070D CGA2B2C0G1H151J CGA2B2C0G1H1R5C CGA2B2C0G1H2R2C CGA2B2C0G1H3R3C CGA2B2C0G1H680J CGA2B2C0G1H6R8D CGA2B2X8R1H221K CGA2B2X8R1H472K CGA3E1X7R1C474K