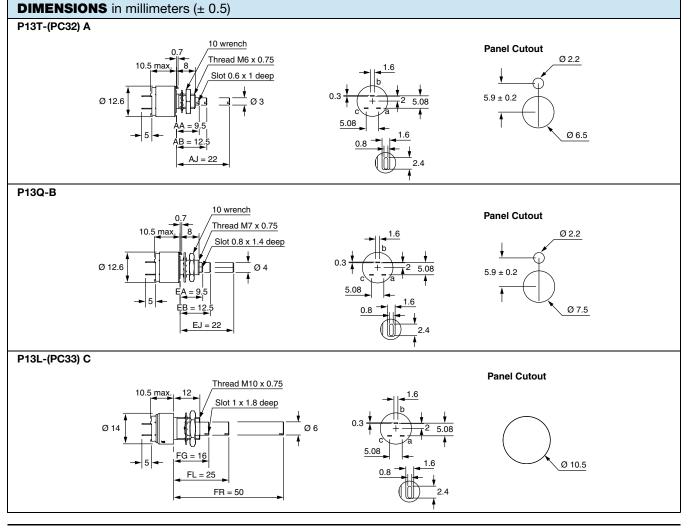


P13

Vishay Sfernice

Fully Sealed Container Cermet Potentiometer Professional Grade

DESIGN SUPPORT TOOLS AVAILABLE


Their excellent performances are due to the use of a cermet-track sealed in a large case.

P13 interchangeability with RV6, combined with the excellent stability of its rated characteristics make it fully acceptable for military and professional uses.

FEATURES

- High power rating 1.5 W at 70 °C
- Product qualification: According to CECC 41 301-001 (A, B, C)
- Test according to CECC 41000 or IEC 60393-1
- GAM T1
- Cermet element
- · Fully sealed case
- Tight temperature coefficient (± 75 ppm/°C typical)
- Mechanical strength
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

QUICK REFERENCE DATA									
Multiple module	No								
Switch module	n/a								
Detent module	n/a								
Special electrical laws	A: linear, L: logarithmic, F: reverse logarithmic								
Sealing level	IP 67								
Lifespan	25K cycles								

Revision: 26-Feb-2019

1 For technical questions, contact: <u>sferpottrimmers@vishay.com</u> Document Number: 51034

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

RoHS

COMPLIANT

www.vishay.com

SHAY

Vishay Sfernice

P13

ELECTRICAL SPECIFICATIONS					
Resistive element	Cermet				
Electrical travel	270° ± 10°				
linear taper	22 Ω to 10 MΩ				
Resistance range logarithmic taper	1 k Ω to 2.2 M Ω				
Standard series e3	1, 2.2, 4.7 and on request 1, 2, 5				
standard	± 20 %				
Tolerance on request	± 10 % to ± 5 %				
Taper	BUD STATES STATE				
Circuit diagram	$ \begin{array}{c} a \\ \circ \\ (1) \\ b \\ \circ \\ \end{pmatrix} \begin{array}{c} c \\ \circ \\ (3) \\ (3) \\ (2) \end{array} $				
Power rating	Linear 1.5 W at 70 °C Logarithmic 0.75 W at 70 °C Amplent temperature in °C				
	AMBIENT TEMPERATURE IN °C				
Temperature coefficient (typical)	± 150 ppm/°C For values ≥ 100 Ω and in temperature range +20 °C to +70 °C, the typical temperature coefficient is ± 75 ppm/°C				
Limiting element voltage (linear law)	350 V				
Contact resistance variation	3 % Rn or 3 Ω				
End resistance (typical)	1 Ω				
Dielectric strength (RMS)	2000 V				
Insulation resistance (300 V _{DC})	10 ⁶ ΜΩ				
Independent linearity (typical)	± 5 %				

2

For technical questions, contact: <u>sferpottrimmers@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u> www.vishay.com

VISHAY

Vishay Sfernice

P13

STANDARD	STANDARD RESISTANCE ELEMENT DATA									
STANDARD		LINEAR TAPER			LOG. TAPER					
RESISTANCE	MAX. POWER AT 70 °C	MAX. WORKING VOLTAGE	MAX. CUR. THROUGH WIPER	MAX. POWER AT 70 °C	MAX. WORKING VOLTAGE	MAX. CUR. THROUGH WIPER	TCR -55 °C +125 °C			
Ω	w	v	mA	w	v	mA	ppm/°C			
22	1.5	5.74	261							
47	1.5	8.4	177							
100	1.5	12.2	122							
220	1.5	18.2	82.6							
470	1.5	26.5	56.5							
1K	1.5	38.7	38.7	0.75	27	27				
2.2K	1.5	57.5	26.1	0.75	40	18				
4.7K	1.5	84	17.9	0.75	59	12				
10K	1.5	122.5	12.2	0.75	87	8.7	± 150			
22K	1.5	182	8.26	0.75	128	5.8	± 150			
47K	1.5	265	5.65	0.75	187	3.9				
100K	1.22	350	3.5	0.75	273	2.7				
220K	0.56	350	1.6	0.56	350	1.6				
470K	0.26	350	0.74	0.26	350	0.74				
1M	0.12	350	0.35	0.12	350	0.35				
2.2M	0.05	350	0.16	0.05	350	0.16				
4.7M	0.026	350	0.074							
10M	0.012	350	0.035							

MECHANICAL SPECIFICATIONS								
Mechanical travel	300	0° ± 5°						
Operating torque (typical)	2 Ncm	2.85 oz. inch						
End stop torque								
style T, Q	35 Ncm max.	3.1 lb inch max.						
style L	80 Ncm max.	7.1 lb inch max.						
Tightening torque of mounting nut								
style T, Q	150 Ncm max.	13.3 lb inch max.						
style L	250 Ncm max.	22.1 lb inch max.						
Unit weight	6 g to 18 g	0.22 oz. to 0.64 oz.						
Terminals	e3: pure Sn							

ENVIRONMENTAL SPECIFICATIONS							
Temperature range	-55 °C to +125 °C						
Climatic category	55 / 125 / 56						
Sealing	Fully sealed - container IP67						

www.vishay.com

Vishay Sfernice

P13

OPTIONS	
Special feature command shaft	Length is measured from the mounting surface to the free end of the shaft. The screwdriver slot is aligned with the wiper within $\pm 10^{\circ}$. Special shafts are available, in accordance to drawings supplied by customers. We recommend that customers should not machine tool shafts, in order to avoid damage. Bending or torsion of terminals should also be avoided.
	Potentiometers P13T and P13L can be fitted with a device providing sealing between the threaded bushing and the front panel. Their designation is P13P and P13N respectively or with a locating peg P13PE and P13NE.
	Panel sealed version P13P P13PE: Including locating peg
	0.7 Panel Cutout
	$\emptyset 12.6 \xrightarrow{AA = 9.5} AA = 9.5 \xrightarrow{AA = 9.5} 0.3 $
Panel sealing	$\begin{array}{c c} AB = 12.5 \\ \hline AJ = 22 \\ \end{array}$
	P13N
	P13NE: Including locating peg Thread M10 x 0.75
	0.3
	$ \begin{array}{c c} \hline & FE = 13.5 \\ \hline & FK = 22.5 \\ \hline & FQ = 47.5 \end{array} \end{array} $
	 On potentiometers equipped with a 3 mm Ø shaft, shaft locking can be obtained: Either by a taper nut tightening a slotted bushing. Ask for P13O type. These devices are normally equipped with an AB type shaft (12.5 mm with a slot). P13O
	$0.7 + \sqrt{\frac{50000 \text{ Bounding}}{10 \text{ wrench}}} = \sqrt{\frac{50000 \text{ Wrench}}{10 \text{ wrench}}}} = \sqrt{\frac{50000 \text{ Wrench}}{10 w$
Shaft locking	 Or by a tightening nut locked by a screw. Ask for ES1 type. On potentiometers equipped with a Ø 6 mm shaft, locking can be obtained by a taper nut applying pressure on a slotted notched washer This device is supplied in a box as an accessory. Ask for DBAN. These devices are ordered separately. Please consult Vishay Sfernice. P13L DBAN
	No locking on shaft Ø 4 mm.

Document Number: 51034

Vishay Sfernice

OPTIONS

OPTIONS	
	Product in conformity with RN6/MIL-R-94/3G
	P13T-F55
RV6 (P13T-F55)	$\begin{array}{c} 45^{\circ} \\ 0.1 \\ 0.1 \\ 0.3 \\ 0.1 \\ 0.3 \\ 0.1 \\ 0.3 \\ 0.$

MARKING

Printed:

- Vishay trademark
- Part number (including ohmic value code, tolerance code and taper)
- Manufacturing date
- Marking of terminals a

PACKAGING

• In box

PERFORMANCE								
			REQUIR	EMENTS	TYPICAL VALUES AND DRIFTS			
TESTS	CONDITIONS	∆ R⊺/R⊺ (%)	∆R ₁₋₂ /R ₁₋₂ (%)	OTHER	∆ R⊺/R⊺ (%)	∆ R₁₋₂/R₁₋₂ (%)	OTHER	
Electrical endurance	1000 h at rated power 90'/30' - ambient temp. 70 °C	± 10 %	-	Contact res. variation: < 7 % Rn	±1%	-	Contact res. variation: < 3 % Rn	
Climatic sequence	Phase A dry heat 125 °C Phase B damp heat Phase C cold -55 °C Phase D damp heat 5 cycles	± 10 %	± 10 %	-	± 0.5 %	±1%	-	
Damp heat, steady state	56 days 40 °C, 93 % HR	± 10 %	± 10 %	Dielectric strength: 250 V Insulation resistance: > 100 MΩ	± 0.5 %	±1%	$\begin{array}{l} \mbox{Dielectric strength:} \\ 1000 \mbox{ V} \\ \mbox{Insulation resistance:} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
Change of temperature	5 cycles -55 °C at +125 °C	±3%	-	-	± 0.5 %	-	-	
Mechanical endurance	25 000 cycles	± 10 %	-	Contact res. variation: < 7 % Rn	±3%	-	Contact res. variation: < 2 % Rn	
Shock	50 g's at 11 ms 3 successive shocks in 3 directions	±2%	-	-	± 0.1 %	± 0.2 %	-	
Vibration	10 Hz to 55 Hz 0.75 mm or 10 gʻs during 6 h	±2%	-	-	± 0.1 %	-	$\Delta V_{1-2}/V_{1-3} < \pm 0.2$ %	

Note

• Nothing stated herein shall be construed as a guarantee of quality or durability

Vishay Sfernice

P13

ORDE	ORDERING INFORMATION (part number)													
Р	P 1 3 P A B 1 0 3 M L B 1 7 E													
									L					
MODEL		Вι	JSH	ING			S	HAFT		OHMIC VALUE	TOLERANCE	TAPER	PACKAGING	SPECIAL
P13		Ø	L	Old codes		ø	L	Only with	Old Shaft	Linear law from 22 Ω	M = 20 % On request:	A = linear L = clockwise	Bushing L or N: shaft < 45 mm	E = locating peg
	Т	6	8	Т				bushing	codes	to 10 $M\Omega$	K = 10 %	logarithmic	B10 =	or
	Q	7	8	Q	AA	3	9.5	Τ, Ρ	K	Logarithmic		F = inverse clockwise	box of 10 pieces shaft > 45 mm	special code given
	L	10	12	V	AB	3	12.5	T, P, O	L, M	law from 1 kΩ to		logarithmic	B08 =	by Vishay
	0	6	11	Н	AJ	3	22	T, P	R	2.2. MΩ			box of 8 pieces	
	Ρ	6	8	TP	EA	4	9.5	Q	Е	103 = 10 kΩ			Other bushings:	
	Ν	10	9.5	VP	EΒ	4	12.5	Q	F				shaft < 20 mm	
					EJ	4	22	Q	G				B17 = box of 25 pieces	
					FG	6	16	L	AC				shaft > 20 mm	
					FL	6	25	L	AM				B12 =	
					FR	6	50	L	AL				box of 15 pieces	
					FE	6	13	Ν	AC					
					FK	6	22	Ν	AM					
					FQ	6	47.5	Ν	AL					

PART NUMBER DESCRIPTION (for information only)												
P13	т	PE	м	10K	20 %	L		ВО				e3
MODEL	BUSHING	SPECIAL	SHAFT	OHMIC VALUE	TOL.	TAPER	SPECIAL	PACKAGING	SPECIAL	SHAFT	SPECIAL	LEAD (Pb)-FREE

RELATED DOCUMENTS	
APPLICATION NOTES	
Potentiometers and Trimmers	www.vishay.com/doc?51001
Guidelines for Vishay Sfernice Resistive and Inductive Components	www.vishay.com/doc?52029

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Potentiometers category:

Click to view products by Vishay manufacturer:

Other Similar products are found below :

58C2-2 590SX1N32F103SS 591SXJ48S252SC 591SXP56S252SC 591SXP56S503SC D31409 70B1G048K502X-A 70B1M032S502W 70B1N056S202W 70B8N056F502W 70J8N048S104U 70L1N040P103W 70L1N048P103X 70L1N048S103W GA2L040S102UC GA2L040S103UC GS1G044P103UA GS1N048P103UA GS1T032S103UA A43-1500 A43-20K A47-200K A4720K RA20LASD251A 132-2-0-202 132-0-0-202 RK14K1220-F25-C0-A103 RK14K1220F25C0C104 RK14K1220-F25-C1-B103 14910FAGJSX10102KA 14910FBGLFY00103KA 14910AABHSX10103KA 14910FAGJSX10104KA 152-01031 C0342008 5K P270-109A J97589 23M728 248BBHS0XB25104MA RV170F-10-15R1-B500K-0021 RV8NAYSB104A 917523A A43-40 A43-750 A438-5 A47-15K A4750K SPPG048S103U SPPG056P103U SWE-10