
PHP

High Power Thin Film Wraparound Chip Resistor

PHP series chip resistors are designed with enlarged backside terminations to reduce the thermal resistance between the topside resistor layer and the solder joint on the end users circuit board.

Actual power handling capability is limited by the end user mounting process. As with any high power chip resistor the ability to remove the generated heat is critical to the overall performance of the device.

FEATURES

- High purity ceramic substrate
- Power rating to 2.5 W
- Resistance range 10 Ω to 30.1 k Ω
- Resistor tolerance to ± 0.1 %
- TCR to ± 25 ppm/°C
- Flame resistant UL 94 V-0

APPLICATIONS

- Power supplies
- Power switching
- Braking system
- Test and measurement equipment
- Motor deflection circuits

TYPICAL PERFORMANCE

	ABSOLUTE	
TCR	25	
TOL.	0.1	

STANDARD ELECTRICAL SPECIFICATIONS				
TEST	CONDITIONS			
Material	Nichrome	-		
Resistance Range	10 Ω to 30.1 kΩ	-		
TCR: Absolute	25 ppm/°C, 50 ppm/°C (standard) and, 100 ppm/°C	-55 °C to +125 °C		
Tolerance: Absolute	0.1 %, 0.5 %, 1.0 % and, 5.0 %	+25 °C		
Power Rating: Resistor	0.375 W - 2.5 W ⁽¹⁾	Maximum at +70 °C		
Stability: Absolute	∆R 0.1 %	2000 h at +70 °C		
Stability: Ratio	Not applicable	-		
Voltage Coefficient	< 0.1 ppm/V	-		
Working Voltage	75 V to 200 V	-		
Operating Temperature Range	-55 °C to +155 °C	-		
Storage Temperature Range	-55 °C to +155 °C	-		
Noise	< -30 dB	-		
Shelf Life Stability: Absolute	± 0.01 %	1 year at +25 °C		

COMPONENT RATINGS

CASE SIZE	POWER RATING (mW)	WORKING VOLTAGE (V)	RESISTANCE RANGE (Ω)
0603	375 ⁽¹⁾	75	10 to 30.1K
0805	625 ⁽¹⁾	100	10 to 30.1K
1206	1000 (1)	200	10 to 30.1K
2512	2500 ⁽¹⁾	200	10 to 30.1K

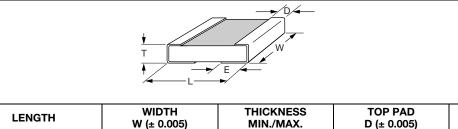
Note (1) Dependent on component mounting by user.

ENVIRONMENTAL TESTS (Vishay Performance vs. MIL-PRF-55342 Requirements)				
ENVIRONMENTAL TEST	LIMITS MIL-PRF-55342 CHARACTERISTIC "E"	TYPICAL VISHAY PERFORMANCE		
Resistance Temperature Characteristic	± 25 ppm/°C	± 15 ppm/°C		
Maximum Ambient Temperature at Rated Wattage	+70 °C	+70 °C		
Maximum Ambient Temperature at Power Derating	+150 °C	+150 °C		
Thermal Shock	± 0.1 %	± 0.04 %		
Low Temperature Operation	± 0.1 %	± 0.001 %		
Short Time Overload	± 0.1 %	± 0.003 %		
High Temperature Exposure	± 0.1 %	± 0.030 %		
Resistance to Soldering Heat	± 0.2 %	± 0.007 %		
Moisture Resistance	± 0.2 %	± 0.002 %		
Life at +70 °C for 2000 h	± 0.5 %	± 0.100 %		

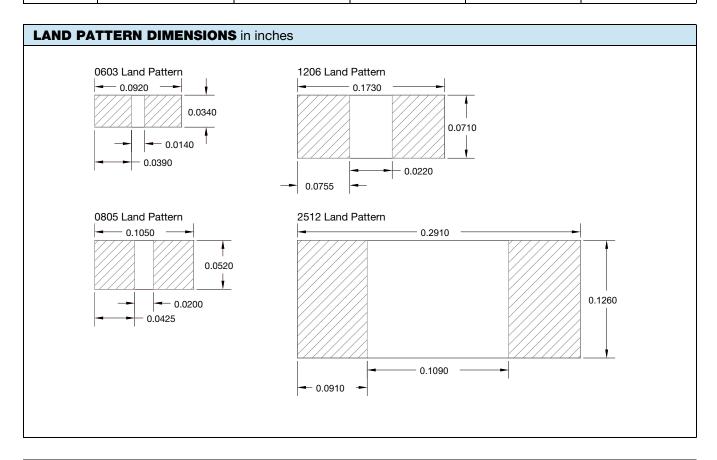
Revision: 27-Jun-16

Document Number: 60076

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

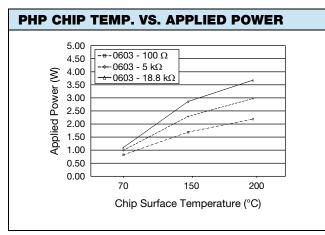


PHP

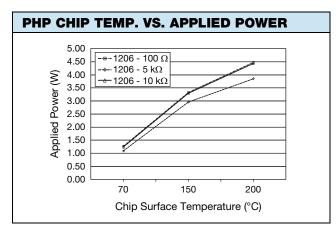

BOTTOM PAD

Vishay Dale Thin Film

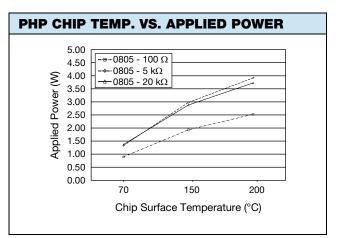
DIMENSIONS in inches


CASE SIZE	LENGTH	WIDTH W (± 0.005)	THICKNESS MIN./MAX.	TOP PAD D (± 0.005)	BOTTOM PAD E (± 0.005)
0603	0.064 ± 0.006	0.032	0.020 max.	0.012	0.021
0805	0.080 ± 0.006	0.050	0.015/0.033	0.016	0.025
1206	0.126 ± 0.008	0.063	0.015/0.033	0.020 + 0.005/- 0.010	0.040
2512	0.259 + 0.009/- 0.015	0.124	0.015/0.033	0.02	0.050

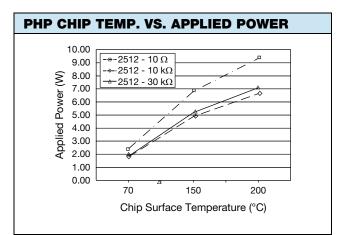
STANDARD MATERIAL SPECIFICATIONS			
Resistive Element	Nichrome		
Substrate Material	Alumina (Al ₂ O ₃)		
Terminations (Tin/Lead)	Tin/lead solder over nickel barrier		
Terminations (Lead (Pb)-free)	Tin/silver/copper (Sn96.5Ag3.0Cu0.5) solder over nickel barrier		


2

Note


 Chip surface temperature measured using FLIR SC645 thermal imaging system with an approximate test card surface temperature of 85 °C.

Notes


- Chip surface temperature measured using FLIR A40 thermal imaging system with an approximate test card surface temperature of 25 °C.
- Thermal imaging was conducted under ambient conditions resulting in a steady state test card surface temperature of 85 °C over the full range of power levels.
- Thermal imaging and load life testing was conducted mounting one device to 2" x 3" test cards with 2.5 mil copper plating on both surfaces. Thermal vias on 120 mil centers were utilized for heat transfer between surfaces of the test card.

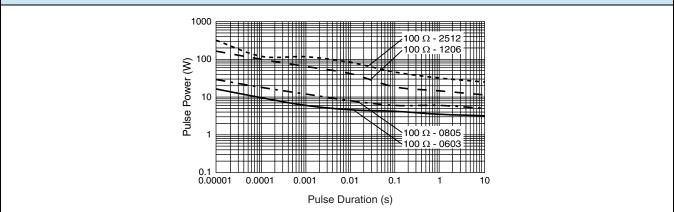
Vishay Dale Thin Film

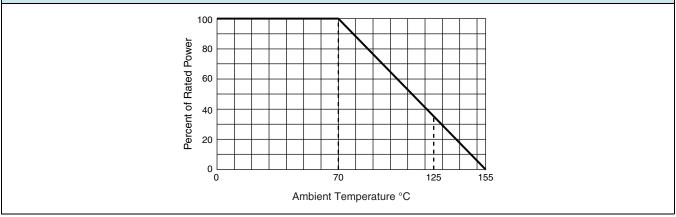
Note

 Chip surface temperature measured using FLIR SC645 thermal imaging system with an approximate test card surface temperature of 85 °C.

Notes

• Chip surface temperature measured using FLIR A40 thermal imaging system with an approximate test card surface temperature of 25 °C.


Case Size	2512	2512	2512	
Resistance Value	Up to 10 Ω Up to 10 k Ω		Up to 30 k Ω	
Temperature	Power (W)			
70	2.44	1.81	1.87	
150	6.82	4.89	5.19	
200	9.33	6.63	7.09	


Vishay Dale Thin Film

PHP

SINGLE PULSE CURVES

DERATING CURVE

GLOBAL PART NUMBER INFORMATION Ρ Ρ 2 0 0 2 н 0 1 0 6 Е 1 В В Т 1 GLOBAL CASE SUBSTRATE TOLERANCE TCR RESISTANCE **TERMINATION** PACKAGING MODEL SIZE PHP 0603 B = Wraparound BS = BULK 0 = Alumina **E** = The first 3 digits **B** = ± 0.1 % 0805 Sn/Pb solder 100 min., 1 mult ± 25 ppm/°C are significant $D = \pm 0.5 \%$ 1206 **H** = figures and the **F** = ± 1.0 % w/nickel barrier WS = WAFFLE last digit 2512 $G = \pm 2.0 \%$ 100 min., 1 mult ± 50 ppm/°C $J = \pm 5.0 \%$ S = Wraparound WI = WAFFLE **K** = specifies the ± 100 ppm/°C number of lead (Pb)-free solder (item single lot zeros to follow. SAC-305 day code) "R" designates RoHS-compliant - e1 100 min., 1 mult the decimal TAPE AND REEL point. **T1** = 1000 min., 1000 mult Example: $10R0 = 10 \Omega$ **T3** = 300 min., 300 mult $1000 = 100 \Omega$ **T5** = 500 min., 500 mult $1001 = 1 \ k\Omega$ TF = Full reel **TS** = 100 min., 1 mult **TI** = 100 min., 1 mult (item single lot date code) **TP** = 100 min., 1 mult (package unit single lot date)

Revision: 27-Jun-16

Document Number: 60076

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Thin Film Resistors - SMD category:

Click to view products by Vishay manufacturer:

Other Similar products are found below :

7-2176089-6 MCW0406MD1001DP500 FCR1206J22R FCR1206J33R 1-2176090-3 1-2176089-6 ERA-3EEB2742V

NCSR250F4M50DTRGF 2176089-1 2176090-4 2176091-3 CMB02070X3000GB200 CPA2512Q6R80FS-T10 4-1625868-7 5-1625868-9 5-18022-5 ERA-3EEB2671V CFR0W4J0220A2P P1206Y1804FNTA CPA2512E68R0FS-T10 CPA2512Q4R70FS-T10 8-2176091-9 2-2176091-0 NCSR150FR003DTRT3F NTR06B5832CTRF NCSR200JR002DTRF RSJ372NL NRC-S12F4751TRF 8-1625868-1 1-2176092-4 4-2176093-9 2176091-9 RT1220P-101-M PLTU0805U1003LST5 PLTU0603U2001LST5 PLTU0805U1001LST5 PLTU0603U4702LST5 4-2176089-0 8-2176091-0 6-2176091-8 3-2176090-3 1-2176092-7 7-2176092-6 7-2176088-7 PCNM2512E1502BST5 2-2176094-5 PCNM2512E3012BST5 4-2176092-6 3-2176091-4 8-2176091-5