
SFH6156

www.vishay.com

Vishay Semiconductors

Optocoupler, Phototransistor Output, High Reliability, 5300 V_{RMS}

LINKS TO ADDITIONAL RESOURCES

SPICE Models

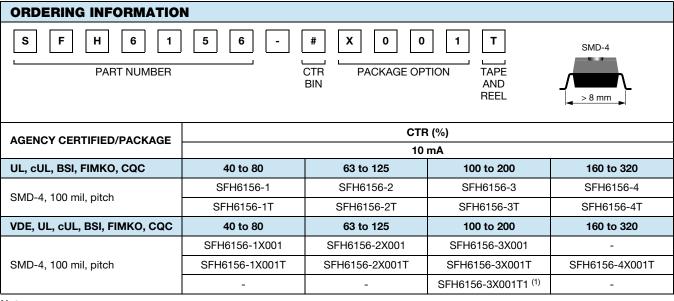
DESCRIPTION

The SFH6156 features a variety of transfer ratios, low coupling capacitance and high isolation voltage. This coupler has a GaAs infrared diode emitter, which is optically coupled to a silicon planar phototransistor detector, and is incorporated in a plastic SMD package.

The coupling devices are designed for signal transmission between two electrically separated circuits.

FEATURES

- Excellent CTR linearity depending on forward current
- Isolation test voltage, 5300 V_{RMS}
- Fast switching times
- Low CTR degradation
- Low coupling capacitance
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>


APPLICATIONS

- Switchmode power supply
- Telecom
- Battery powered equipment

AGENCY APPROVALS

The safety application model number covering all products in this datasheet is SFH615A. This model number should be used when consulting safety agency documents.

- <u>UL 1577</u>
- <u>cUL</u>
- DIN EN 60747-5-5 (VDE 0884-5) available with option 1
- <u>BSI</u>
- <u>CQC</u> •
- <u>FIMKO</u>

Notes

• • Additional options may be possible, please contact sales office

⁽¹⁾ T1 rotation in tape and reel packaging

1

Document Number: 83671

COMPLIANT

www.vishay.com

Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)								
PARAMETER	TEST CONDITION	VALUE	UNIT					
INPUT								
Reverse voltage		V _R	6	V				
DC forward current		۱ _F	60	mA				
Surge forward current	$t_p \le 10 \ \mu s$	I _{FSM}	2.5	А				
OUTPUT								
Collector emitter voltage		V _{CEO}	70	V				
Emitter collector voltage		V _{ECO}	7	V				
Collector current		Ι _C	50	mA				
	t _p ≤ 1 ms	Ι _C	100	mA				
COUPLER								
Storage temperature range		T _{stg}	-55 to +150	°C				
Ambient temperature range		T _{amb}	-55 to +100	°C				
Soldering temperature ⁽¹⁾	max. 10 s	T _{sld}	260	°C				

Notes

• Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute maximum ratings for extended periods of the time can adversely affect reliability

(2) Refer to reflow profile for soldering conditions for surface mounted devices (SMD)

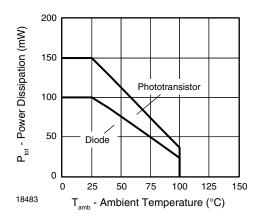


Fig. 1 - Permissible Power Dissipation vs. Ambient Temperature

www.vishay.com

SFH6156

Vishay Semiconductors

THERMAL CHARACTERISTICS				
PARAMETER	SYMBOL	VALUE	UNIT	
LED power dissipation	P _{diss}	100	mW	
Output power dissipation	P _{diss}	150	mW	
Maximum LED junction temperature	T _{jmax.}	125	°C	
Maximum output die junction temperature	T _{jmax.}	125	°C	
Thermal resistance, junction emitter to board	θ_{EB}	173	°C/W	
Thermal resistance, junction emitter to case	θ_{EC}	149	°C/W	
Thermal resistance, junction detector to board	θ_{DB}	111	°C/W	
Thermal resistance, junction detector to case	θ_{DC}	127	°C/W	
Thermal resistance, junction emitter to junction detector	θ_{ED}	95	°C/W	
Thermal resistance, board to ambient (1)	θ_{BA}	195	°C/W	
Thermal resistance, case to ambient ⁽¹⁾	θ_{CA}	3573	°C/W	

Notes

 The thermal model is represented in the thermal network below. Each resistance value given in this model can be used to calculate the temperatures at each node for a given operating condition. The thermal resistance from board to ambient will be dependent on the type of PCB, layout and thickness of copper traces. For a detailed explanation of the thermal model, please reference Vishay's thermal characteristics of optocouplers application note

⁽¹⁾ For 2 layer FR4 board (4" x 3" x 0.062")

ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)								
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT	
INPUT	INPUT							
Forward voltage	I _F = 60 mA		V _F	-	1.25	1.65	V	
Reverse current	V _R = 6 V		I _R	-	0.01	10	μA	
Capacitance	$V_R = 0 V$, f = 1 MHz		Co	-	13	-	pF	
OUTPUT								
Collector emitter capacitance	V _{CE} = 5 V, f = 1 MHz		C _{CE}	-	5.2	-	pF	
Collector emitter leakage current	V _{CE} = 10 V	SFH6156-1	I _{CEO}	-	2	50	nA	
		SFH6156-2	I _{CEO}	-	2	50	nA	
		SFH6156-3	I _{CEO}	-	5	100	nA	
		SFH6156-4	I _{CEO}	-	5	100	nA	
COUPLER								
Collector emitter saturation voltage	$I_F = 10 \text{ mA}, I_C = 2.5 \text{ mA}$		V _{CEsat}	-	0.25	0.4	V	
Coupling capacitance			C _C	-	0.4	-	pF	

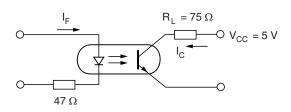
Note

 Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements

Vishay Semiconductors

CURRENT TRANSFER RATIO							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
	I _F = 10 mA, V _{CE} = 5 V	SFH6156-1	CTR	40	-	80	%
		SFH6156-2	CTR	63	-	125	%
		SFH6156-3	CTR	100	-	200	%
		SFH6156-4	CTR	160	-	320	%
I _C /I _F	I _F = 1 mA, V _{CE} = 5 V	SFH6156-1	CTR	13	30	-	%
		SFH6156-2	CTR	22	45	-	%
		SFH6156-3	CTR	34	70	-	%
		SFH6156-4	CTR	56	90	-	%

SWITCHING CHA	RACTERISTICS (T _{amb} = 25 °C,	unless othe	rwise spe	cified)			
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
NON-SATURATED	·						
Turn-on time	$I_F = 10 \text{ mA}, V_{CC} = 5 \text{ V}, \text{ R}_L = 75 \Omega$		t _{on}	-	3	-	μs
Rise time	$I_F = 10 \text{ mA}, \text{V}_{\text{CC}} = 5 \text{V}, \text{R}_{\text{L}} = 75 \Omega$		t _r	-	2	-	μs
Turn-off time	$I_F = 10 \text{ mA}, \text{V}_{\text{CC}} = 5 \text{V}, \text{R}_{\text{L}} = 75 \Omega$		t _{off}	-	2.3	-	μs
Fall time	$I_F = 10 \text{ mA}, V_{CC} = 5 \text{ V}, \text{ R}_L = 75 \Omega$		t _f	-	2	-	μs
Cut-off frequency	$I_F = 10 \text{ mA}, \text{V}_{\text{CC}} = 5 \text{V}, \text{R}_{\text{L}} = 75 \Omega$		f _{CO}	-	250	-	kHz
SATURATED							
	I _F = 20 mA	SFH6156-1	t _{on}	-	3	-	μs
Turn-on time	10 10 10	SFH6156-2	t _{on}	-	4.2	-	μs
	I _F = 10 mA	SFH6156-3	t _{on}	-	4.2	-	μs
	I _F = 5 mA	SFH6156-4	t _{on}	-	6	-	μs
	I _F = 20 mA	SFH6156-1	t _r	-	2	-	μs
	10 10 10	SFH6156-2	t _r	-	3	-	μs
Rise time	I _F = 10 mA	SFH6156-3	t _r	-	3	-	μs
	I _F = 5 mA	SFH6156-4	t _r	-	4	-	μs
	I _F = 20 mA	SFH6156-1	t _{off}	-	18	-	μs
Turn off time	10 mA	SFH6156-2	t _{off}	-	23	-	μs
Turn-off time $I_F = 10$	I _F = 10 mA	SFH6156-3	t _{off}	-	23	-	μs
	I _F = 5 mA	SFH6156-4	t _{off}	-	25	-	μs
	I _F = 20 mA		t _f	-	11	-	μs
		SFH6156-2	t _f	-	14	-	μs
Fall time	I _F = 10 mA	SFH6156-3	t _f	-	14	-	μs
	I _F = 5 mA	SFH6156-4	t _f	-	15	-	μs



SAFETY AND INSULATION RATINGS						
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT		
Climatic classification	According to IEC 68 part 1		55/100/21			
Comparative tracking index		CTI	175			
Maximum rated withstanding isolation voltage	t = 1 min	V _{ISO}	4420	V _{RMS}		
Maximum transient isolation voltage		VIOTM	10 000	V		
Maximum repetitive peak isolation voltage		V _{IORM}	890	V		
Isolation resistance	$V_{IO} = 500 \text{ V}, \text{ T}_{amb} = 25 ^{\circ}\text{C}$	R _{IO}	≥ 10 ¹²	Ω		
Isolation resistance	$V_{IO} = 500 \text{ V}, \text{T}_{amb} = 100 \ ^{\circ}\text{C}$	R _{IO}	≥ 10 ¹¹	Ω		
Output safety power		P _{SO}	400	mW		
Input safety current		I _{SI}	275	mA		
Input safety temperature		T _{SI}	175	°C		
Creepage distance			≥7	mm		
Clearance distance			≥7	mm		
Insulation thickness		DTI	≥ 0.4	mm		

Note

• As per IEC 60747-5-5, § 7.4.3.8.2, this optocoupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with the safety ratings shall be ensured by means of protective circuits

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

isfh615a_01

Fig. 2 - Linear Operation (without saturation)

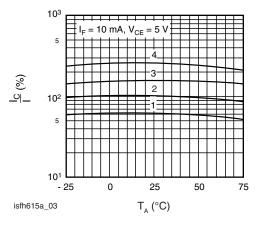
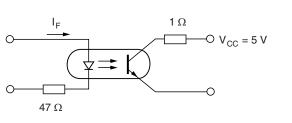



Fig. 4 - Current Transfer Ratio (typ.) vs. Temperature

isfh615a_02

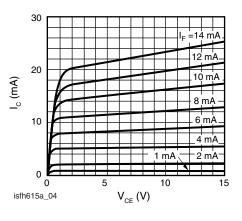
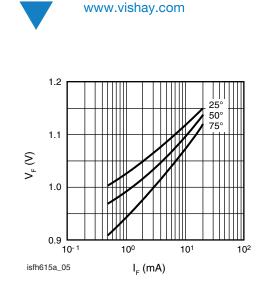


Fig. 5 - Output Characteristics (typ.) Collector Current vs. Collector Emitter Voltage


Rev. 2.9	, 27-Aug-2021
----------	---------------

5

Document Number: 83671

For technical questions, contact: <u>optocoupleranswers@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Semiconductors

SHA

Fig. 6 - Diode Forward Voltage (typ.) vs. Forward Current

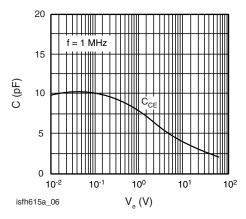
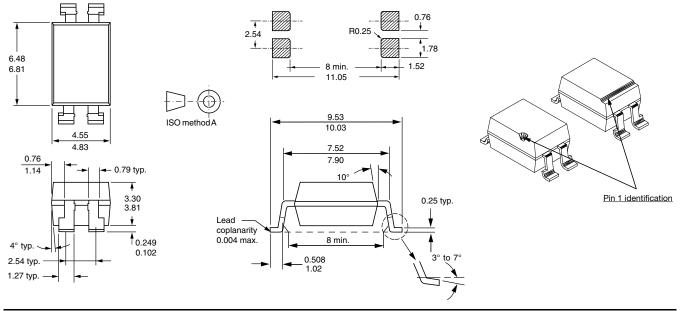



Fig. 7 - Transistor Capacitance (typ.) vs. Collector Emitter Voltage

Rev. 2.9, 27-Aug-2021

6 cal questions, contact; optocoupleranswers@vi Document Number: 83671

For technical questions, contact: <u>optocoupleranswers@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

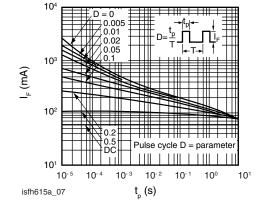
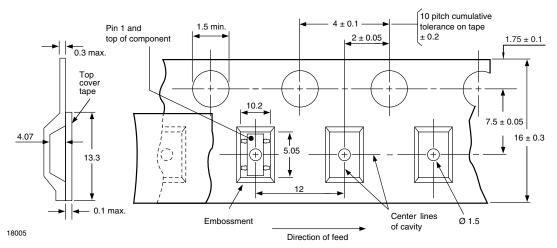


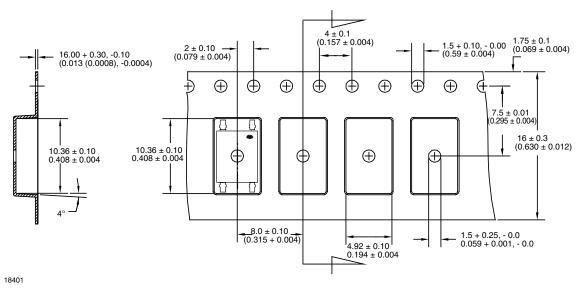
Fig. 8 - Permissible Pulse Handling Capability Forward Current vs. Pulse Width

Vishay Semiconductors

PACKAGE MARKING (example of SFH6156-2X001T)


Notes

- VDE logo is only marked on option 1 parts
- Tape and reel suffix (T) is not part of the package marking


TAPE AND REEL PACKAGING (in millimeters)

The tape is 16 mm and is wound on a 33 cm reel. There are 1000 parts per reel. Taped and reeled 4 pin optocouplers conform to EIA-481-2 and IEC60286-3.

SMD-4 ("T")

Rev. 2.9, 27-Aug-2021

7

SFH6156 Vishay Semiconductors

SOLDER PROFILES

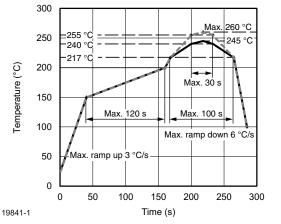


Fig. 9 - Lead (Pb)-free Reflow Solder Profile According to J-STD-020 for SMD Devices

HANDLING AND STORAGE CONDITIONS

ESD level: HBM class 2 Floor life: unlimited Conditions: $T_{amb} < 30\ ^\circ C,\ RH < 85\ \%$ Moisture sensitivity level 1, according to J-STD-020

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Transistor Output Optocouplers category:

Click to view products by Vishay manufacturer:

Other Similar products are found below :

LTV-814S-TA LTV-824HS 66095-001 6N136-X017T MCT6-X007 MOC8101-X017T PS2561A-1-W-A PS2561B-1-L-A PS2561L-1-V-A MRF658 IL755-1X007 ILD2-X006 ILD74-X001 ILQ615-2X017 ILQ615-3X016 LDA102S LDA110S PS2561-1-V-W-A PS2561AL-1-V-A PS2561L1-1-L-A PS2701A-1-F3-P-A PS2801-1-F3-P-A PS2911-1-L-AX CNY17-2X017 CNY17-4X001 CNY17-4X017 CNY17F-1X007 CNY17F-2X017 CNY17F-4X001 CNY17G-1 LTV-214 LTV-702VB LTV-733S LTV-816S-TA LTV-825S TCET1113 TCET2100 4N25-X007T IL215AT ILD615-1X007 ILQ2-X007 VOS615A-2T WPPC-A11066AA WPPC-A11066AD WPPC-A11084ASS WPPC-A21068AA WPPC-D11066AA WPPC-D21068ED WPPC-D410616EA WPPC-D410616ED