

Vishay Semiconductors

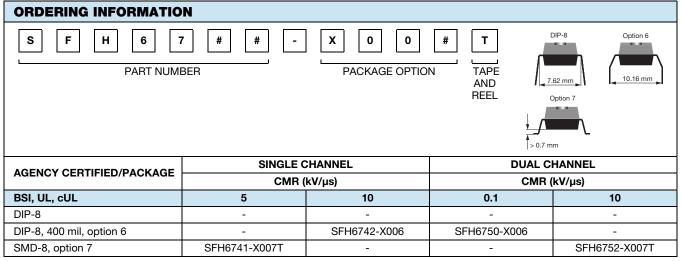
High Speed Optocoupler, Single and Dual, 10 MBd

DESCRIPTION

The SFH674x and SFH675x are single channel 10 MBd optocouplers utilizing a high efficient input LED coupled with an integrated optical photodiode IC detector. The detector has an open drain NMOS-transistor output, providing less leakage compared to an open collector Schottky clamped transistor output. For the single channel type, an enable function on pin 7 allows the detector to be strobed. The internal shield provides a guaranteed common mode transient immunity of 5 kV/µs for the SFH6741 and 10 kV/µs for the SFH6742 and SFH6752.

FEATURES

- Choice of CMR performance of 10 kV/ $\mu s,$ 5 kV/ $\mu s,$ and 100 V/ μs
- High speed: 10 MBd typical
- + 5 V CMOS compatibility
- Pure tin leads


- Guaranteed AC and DC performance over temperature: - 40 °C to + 100 °C temperature range
 COMPLIANT
- Meets IEC 60068-2-42 (SO2) and IEC 60068-2-43 (H2S) requirements
- Low input current capability: 5 mA
- Compliant to RoHS Directive to 2002/95/EC and in accordance WEEE 2002/96/EC

APPLICATIONS

- Microprocessor system interface
- PLC, ATE input/output isolation
- Computer peripheral interface
- Digital fieldbus isolation: CC-link, DeviceNet, profibus, SDS
- High speed A/D and D/A conversion
- AC plasma display panel level shifting
- Multiplexed data transmission
- Digital control power supply
- Ground loop elimination

AGENCY APPROVALS

- UL1577, file no. E52744 system code H, double protection
- cUL file no. E52744, equivalent to CSA bulletin 5A
- DIN EN 60747-5-2 (VDE 0884)/ VDE available with option 1
- Reinforced insulation rating per IEC60950 2.10.5.1

Note

• For additional information on the available options refer to Option Information.

This document is subject to change without notice.

THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

Vishay Semiconductors High Speed Optocoupler, Single and Dual,

10 MBd

TRUTH TABLE (positive logic)					
LED	ENABLE	OUTPUT			
On	Н	L			
Off	Н	Н			
On	L	Н			
Off	L	н			
On	NC	L			
Off	NC	Н			

ABSOLUTE MAXIMUM RATING	S (T _{amb} = 25 °C, unless	otherwise specif	ied)	
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
INPUT			· ·	
Average forward current (single channel)		I _F	20	mA
Average forward current (per channel for dual channel)		I _F	15	mA
Reverse input voltage		V _R	5	V
Enable input voltage (single channel)		V _E	V _{CC} + 0.5 V	V
Enable input current (single channel)		Ι _Ε	5	mA
Surge current	t = 100 µs	I _{FSM}	200	mA
OUTPUT				
Supply voltage		V _{CC}	7	V
Output current		lo	50	mA
Output voltage		Vo	7	V
Output power dissipation (single channel)		P _{diss}	85	mW
Output power dissipation per channel (dual channel)		P _{diss}	60	mW
COUPLER				
Storage temperature		T _{stg}	- 55 to + 150	°C
Operating temperature		T _{amb}	- 40 to + 100	°C
Lead solder temperature (single channel)	for 10 s		260	°C
Solder reflow temperature ⁽¹⁾	for 1 min		260	°C
Isolation test voltage	t = 1 s	V _{ISO}	5300	V _{RMS}

Notes

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not
implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute
maximum ratings for extended periods of the time can adversely affect reliability.

⁽¹⁾ Refer to reflow profile for soldering conditions for surface mounted devices (SMD). Refer to wave profile for soldering conditions for through hole devices (DIP).

RECOMMENDED OPERATING CONDITIONS							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	MAX.	UNIT		
Operating temperature		T _{amb}	- 40	100	°C		
Supply voltage		V _{CC}	4.5	5.5	V		
Input current low level		I _{FL}	0	250	μA		
Input current high level		I _{FH}	5	15	mA		
Logic high enable voltage		V _{EH}	2	V _{CC}	V		
Logic low enable voltage		V _{EL}	0	0.8	V		
Output pull up resistor		RL	330	4K	Ω		
Fanout	$R_L = 1 k\Omega$	N		5	-		

High Speed Optocoupler, Single and Dual, Vishay Semiconductors 10 MBd

ELECTRICAL CHARACTERISTICS							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
INPUT							
Input forward voltage	I _F = 10 mA	V _F	1	1.4	1.7	V	
Reverse current	V _R = 5 V	I _R		0.01	10	μA	
Input capacitance	$f = 1 MHz, V_F = 0 V$	CI		55		pF	
OUTPUT							
High level supply current	$V_{E} = 0.5 \text{ V}, I_{F} = 0 \text{ mA}$	I _{CCH}		4.1	7	mA	
(single channel)	$V_E = V_{CC}, I_F = 0 \text{ mA}$	I _{CCH}		3.3	6	mA	
High level supply current (dual channel)	I _F = 0 mA	I _{CCH}		6.9	12	mA	
Low level supply current	$V_{E} = 0.5 \text{ V}, I_{F} = 10 \text{ mA}$	I _{CCL}		4	7	mA	
(single channel)	$V_{E} = V_{CC}, I_{F} = 10 \text{ mA}$	I _{CCL}		3.3	6	mA	
Low level supply current (dual channel)	I _F = 10 mA	I _{CCL}		6.5	12	mA	
High level output current	$V_{E} = 2 V, V_{O} = 5.5 V,$ $I_{F} = 250 \mu A$	I _{OH}		0.002	1	μA	
Low level output voltage	$V_E = 2 V$, $I_F = 5 mA$, I_{OL} (sinking) = 13 mA	V _{OL}		0.2	0.6	V	
Input threshold current	$V_E = 2 V$, $V_O = 5.5 V$, I_{OL} (sinking) = 13 mA	I _{TH}		2.4	5	mA	
High level enable current	V _E = 2 V	I _{EH}		- 0.6	- 1.6	mA	
Low level enable current	V _E = 0.5 V	I _{EL}		- 0.8	- 1.6	mA	
High level enable voltage		V _{EH}	2			V	
Low level enable voltage		V _{EL}			0.8	V	

Note

 Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements. All typicals at T_{amb} = 25 °C, V_{CC} = 5.5 V, unless otherwise specified.

SWITCHING CHARACTERISTICS							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Propagation delay time to high output level	R_L = 350 Ω, C_L = 15 pF	t _{PLH}	20	48	100	ns	
Propagation delay time to low output level	R_L = 350 Ω, C_L = 15 pF	t _{PHL}	25	50	100	ns	
Pulse width disortion	$R_L = 350 \Omega, C_L = 15 pF$	t _{PHL} - t _{PLH}		2.9	35	ns	
Propagation delay skew	$R_L = 350 \ \Omega, \ C_L = 15 \ pF$	t _{PSK}		8	40	ns	
Output rise time (10 % to 90 %)	R_L = 350 Ω, C_L = 15 pF	t _r		23		ns	
Output fall time (90 % to 10 %)	R_L = 350 Ω, C_L = 15 pF	t _f		7		ns	
Propagation delay time of enable from V_{EH} to V_{EL}	$ \begin{array}{l} {\sf R}_{\sf L} = 350 \; \Omega, \; {\sf C}_{\sf L} = 15 \; p{\sf F}, \\ {\sf V}_{\sf EL} = 0 \; {\sf V}, \; {\sf V}_{\sf EH} = 3 \; {\sf V} \end{array} $	t _{ELH}		12		ns	
Propagation delay time of enable from V_EL to V_EH		t _{EHL}		11		ns	

Note

 Over recommended temperature (T_{amb} = - 40 °C to + 100 °C), V_{CC} = 5 V, I_F = 7.5 mA unless otherwise specified. All typicals at T_{amb} = 25 °C, V_{CC} = 5 V.

Vishay Semiconductors High Speed Optocoupler, Single and Dual,

10 MBd

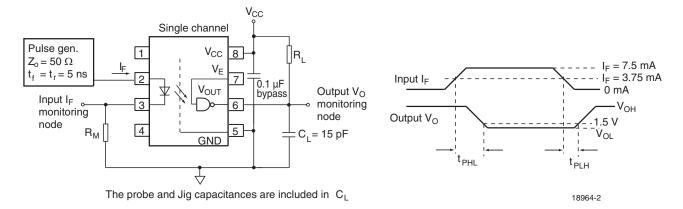


Fig. 1 - Single Channel Test Circuit for $t_{\text{PLH}},\,t_{\text{PHL}},\,t_{\text{r}}$ and t_{f}

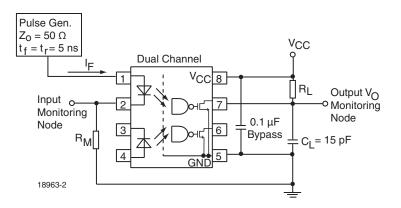
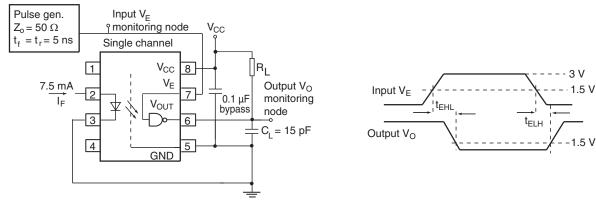



Fig. 2 - Dual Channel Test Circuit for $t_{\mathsf{PLH}},\, t_{\mathsf{PHL}},\, t_r$ and t_f

The probe and Jig capacitances are included in CL

Fig. 3 - Single Channel Test Circuit for tEHL, and tELH

Document Number: 82584 Rev. 2.1, 29-Apr-11

18975-2

This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

High Speed Optocoupler, Single and Dual, Vishay Semiconductors 10 MBd

COMMON MODE TRANSIENT IMMUNITY								
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT		
Common mode transient immunity (high)	$\begin{array}{l} V_{CM} = 10 \text{ V}, V_{CC} = 5 \text{ V}, I_F = 0 \text{ mA}, \\ V_{O(\text{min.})} = 2 \text{ V}, R_L = 350 \ \Omega, T_{\text{amb}} = 25 \ ^{\circ}\text{C}^{(1)} \end{array}$	CM _H	100			V/µs		
	$\begin{array}{l} V_{CM} = 50 \text{ V}, V_{CC} = 5 \text{ V}, I_F = 0 \text{ mA}, \\ V_{O(\text{min.})} = 2 \text{ V}, R_L = 350 \ \Omega, T_{\text{amb}} = 25 \ ^{\circ}\text{C} \ ^{(2)} \end{array}$	CM _H	5000	10 000		V/µs		
	$\begin{array}{l} V_{CM} = 1 \text{ kV}, V_{CC} = 5 \text{ V}, I_F = 0 \text{ mA}, \\ V_{O(\text{min.})} = 2 \text{ V}, R_L = 350 \ \Omega, T_{\text{amb}} = 25 \ ^{\circ}\text{C} \ ^{(3)} \end{array}$	CM _H	10 000	15 000		V/µs		
	$\begin{array}{l} V_{CM} = 10 \text{ V}, V_{CC} = 5 \text{ V}, I_F = 7.5 \text{ mA}, \\ V_{O(max.)} = 0.8 \text{ V}, R_L = 350 \ \Omega, T_{amb} = 25 \ ^{\circ}C \ ^{(1)} \end{array}$	CM _L	100			V/µs		
	$\begin{array}{l} V_{CM} = 50 \ V, \ V_{CC} = 5 \ V, \ I_F = 7.5 \ mA, \\ V_{O(max.)} = 0.8 \ V, \ R_L = 350 \ \Omega, \ T_{amb} = 25 \ ^{\circ}C \ ^{(2)} \end{array}$	CM _L	5000	10 000		V/µs		
	$\begin{array}{l} V_{CM} = 1 \ \text{kV}, \ V_{CC} = 5 \ \text{V}, \ \text{I}_{\text{F}} = 7.5 \ \text{mA}, \\ V_{O(\text{max.})} = 0.8 \ \text{V}, \ \text{R}_{L} = 350 \ \Omega, \ \text{T}_{\text{amb}} = 25 \ ^{\circ}\text{C}^{\ (3)} \end{array}$	CM _L	10 000	15 000		V/µs		

Notes

⁽¹⁾ For SFH6750

⁽²⁾ For SFH6741

⁽³⁾ For SFH6742 and SFH6752

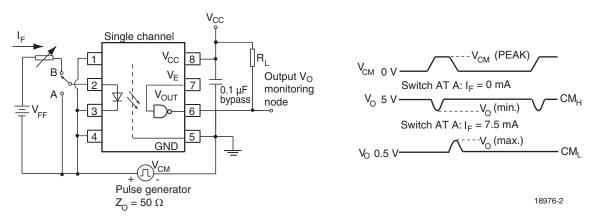


Fig. 4 - Single Channel Test Circuit for Common Mode Transient Immunity

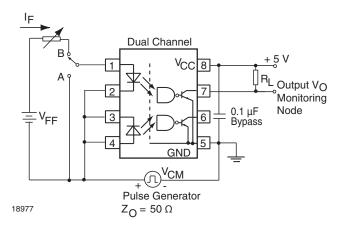


Fig. 5 - Dual Channel Test Circuit for Common Mode Transient Immunity

This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Semiconductors High Speed Optocoupler, Single and Dual,

10 MBd

SAFETY AND INSULATION RATINGS							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Climatic classification	according to IEC 69 part 1			55/110/21			
Comparative tracking index		CTI	175		399		
Peak transient overvoltage		V _{IOTM}	8000			V	
Peak insulation voltage		VIORM	630			V	
Safety rating - power output		P _{SO}			500	mW	
Safety rating - input current		I _{SI}			300	mA	
Safety rating - temperature		T _{SI}			175	°C	
Creepage distance	Standard DIP-8		7			mm	
Clearance distance	Standard DIP-8		7			mm	
Creepage distance	400 mil DIP-8		8			mm	
Clearance distance	400 mil DIP-8		8			mm	
Insulation thickness, reinforced rated	per IEC60950.2.10.5.1		0.2			mm	

Note

• As per IEC 60747-5-2, §7.4.3.8.1, this optocoupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with the safety ratings shall be ensured by means of prodective circuits.

TYPICAL CHARACTERISTICS (Tamb = 25 °C, unless otherwise specified)

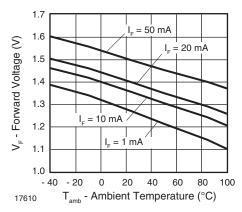


Fig. 6 - Forward Voltage vs. Ambient Temperature

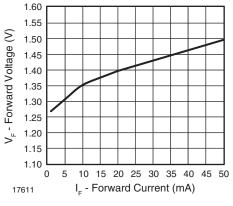


Fig. 7 - Forward Voltage vs. Forward Current

Fig. 8 - Reverse Current vs. Ambient Temperature

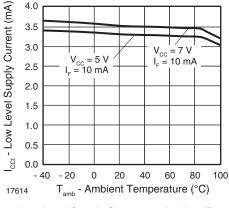


Fig. 9 - Low Level Supply Current vs. Ambient Temperature

For technical questions, contact: optocoupleranswers@vishay.com

Document Number: 82584 Rev. 2.1, 29-Apr-11

This document is subject to change without notice.

THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

High Speed Optocoupler, Single and Dual, Vishay Semiconductors 10 MBd

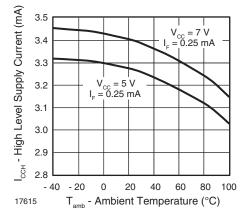


Fig. 10 - High Level Supply Current vs. Ambient Temperature

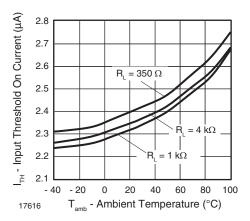


Fig. 11 - Input Threshold On Current vs. Ambient Temperature

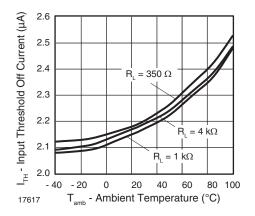


Fig. 12 - Input Threshold Off Current vs. Ambient Temperature

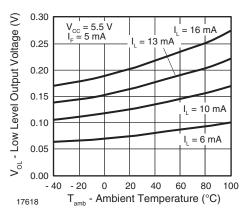


Fig. 13 - Low Level Output Voltage vs. Ambient Temperature

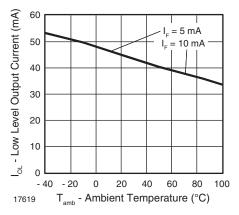


Fig. 14 - Low Level Output Current vs. Ambient Temperature

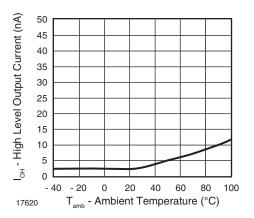


Fig. 15 - High Level Output Current vs. Ambient Temperature

Document Number: 82584 Rev. 2.1, 29-Apr-11

This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Semiconductors High Speed Optocoupler, Single and Dual,

10 MBd

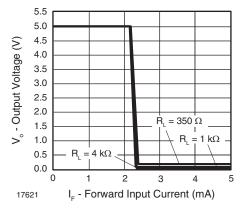


Fig. 16 - Output Voltage vs. Forward Input Current

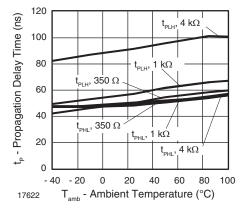


Fig. 17 - Propagation Delay vs. Ambient Temperature

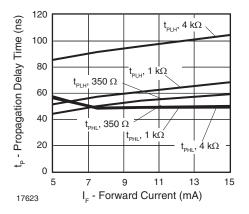


Fig. 18 - Propagation Delay vs. Forward Current

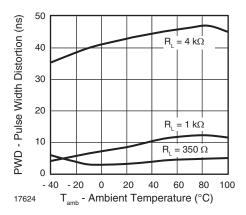


Fig. 19 - Pulse Width Distortion vs. Ambient Temperature

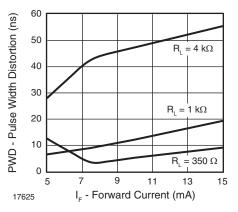


Fig. 20 - Pulse Width Distortion vs. Forward Current

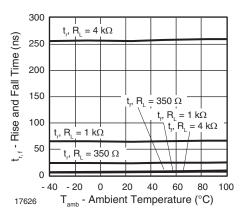


Fig. 21 - Rise and Fall Time vs. Ambient Temperature

www.vishay.com 8

Document Number: 82584 Rev. 2.1, 29-Apr-11

This document is subject to change without notice.

THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

High Speed Optocoupler, Single and Dual, Vishay Semiconductors 10 MBd

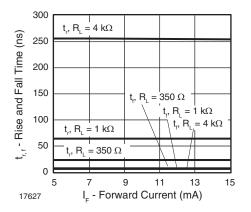


Fig. 22 - Rise and Fall Time vs. Forward Current

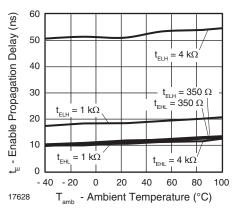
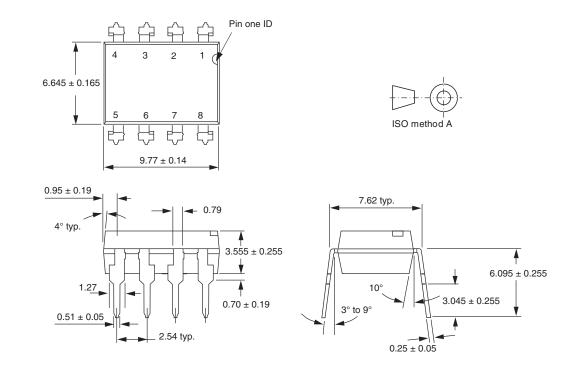
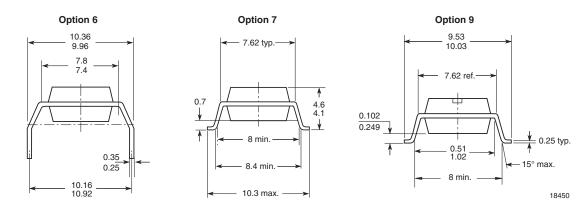



Fig. 23 - Enable Propagation Delay vs. Ambient Temperature

PACKAGE DIMENSIONS in millimeters

i178006


This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Semiconductors High

High Speed Optocoupler, Single and Dual, 10 MBd

PACKAGE DIMENSIONS in millimeters

PACKAGE MARKING (for example)

Notes

- Option 1 and VDE logos are only marked on option 1 parts.
- Tape and reel suffix (T) is not part of the package marking.

This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for High Speed Optocouplers category:

Click to view products by Vishay manufacturer:

Other Similar products are found below :

 TLP558(F)
 JAN4N24
 610737H
 HCPL2630M
 HCPL2731SM
 HCPL2630SM
 PS9817A-1-F3-AX
 EL816S2(C)(TU)-F
 TLP281-4

 TLP290(V4GBTP,SE(T
 PS9121-F3-AX
 PS9123-F3-AX
 TLP5774H(TP4,E
 TLP5771H(TP,E
 HCPL2631SD
 HCPL-4661-500E

 TLP118(TPL,E)
 TLP521-2XGB
 TLP621-2XGB
 4N46-300E
 JANTXV4N24U
 SFH6318T
 6N135-300E
 TIL198
 TLP2309(TPL,E)

 TLP2355(TPL,E
 TLP2391(E(T
 TLP521-4GR
 TLP521-4XGB
 TLP621-4X
 TLP621XSM
 IS281-4GB
 IS2805-4
 IS181GR
 ICPL2631

 ICPL2630
 ICPL2531
 ICPL2601
 TLP714(F)
 TLP754(F)
 FOD260LSDV
 ACPL-M21L-500E
 ACPL-064L-500E
 PS2501-1XSM
 PS2505-1

 PS2561L2-1-F3-A
 PS2913-1-F3-AX
 PS9821-2-F3-AX
 FOD0721R2