

Vishay Semiconductors

Optocoupler Phototransistor Output, SOP-4, Mini-Flat Package

DESCRIPTION

The SFH690ABT/AT/BT/CT/DT family has a GaAs infrared emitting diode emitter, which is optically coupled to a silicon planar phototransistor detector, and is incorporated in a 4-pin 100 mil lead pitch miniflat package. It features a high current transfer ratio, low coupling capacitance, and high isolation voltage.

The coupling devices are designed for signal transmission between two electrically separated circuits. The SFH690 series is available only on tape and reel. There are 2000 parts per reel. Marking for SFH690AT is 690A; SFH690BT is 690B; SFH690CT is 690C; SFH690DT is 690D; SFH690ABT will be marked as 690A or 690B.

FEATURES

- SOP (small outline package)
- Isolation test voltage, 3750 V_{RMS} (1.0 s)
- High collector emitter breakdown voltage, $V_{CEO} = 70 \text{ V}$
- Low saturation voltage
- · Fast switching times
- Temperature stable
- · Low coupling capacitance
- End-stackable, 0.100" (2.54 mm) spacing
- Lead (Pb)-free component
- Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC

APPLICATIONS

- · High density mounting or space sensitive PCBs
- PLCs
- Telecommunication

AGENCY APPROVALS

- UL1577, file no. E52744 system code U
- CSA 93751
- BSI IEC 60950; IEC 60065
- DIN EN 60747-5-5 available with option 1

ORDER INFORMATION	
PART	REMARKS
SFH690ABT	CTR 50 to 300 %, SOP-4
SFH690AT	CTR 50 to 150 %, SOP-4
SFH690BT	CTR 100 to 300 %, SOP-4
SFH690CT	CTR 100 to 200 %, SOP-4
SFH690DT	CTR 200 to 400 %, SOP-4
SFH690CT-X001	CTR 100 to 200 %, SOP-4 (option 1) (VDE)

Note

For additional information on the available options refer to option information.

ABSOLUTE MAXIMUM RATINGS ⁽¹⁾							
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT			
INPUT							
Reverse voltage		V _R	6.0	V			
DC forward current		١ _F	50	mA			
Surge forward current	$t_p \le 10 \ \mu s$	I _{FSM}	2.5	A			
Power dissipation		P _{diss}	80	mW			

Vishay Semiconductors

Optocoupler Phototransistor Output, SOP-4, Mini-Flat Package

ABSOLUTE MAXIMUM RATIN	GS ⁽¹⁾						
PARAMETER TEST CONDITION SYMBOL VALUE							
OUTPUT	·						
Collector emitter voltage		V _{CE}	70	V			
Emitter collector voltage		V _{EC}	7.0	V			
Collector current		I _C	50	mA			
	$t_p \le 1.0 \text{ ms}$	I _C	100	mA			
Power dissipation		P _{diss}	150	mW			
COUPLER	·						
Isolation test voltage between emitter and detector (1.0 s)		V _{ISO}	3750	V _{RMS}			
Isolation resistance	V _{IO} = 500 V, T _{amb} = 25 °C	R _{IO}	≥ 10 ¹²	Ω			
Isolation resistance	V _{IO} = 500 V, T _{amb} = 100 °C	R _{IO}	≥ 10 ¹¹	Ω			
Storage temperature range		T _{stg}	- 55 to + 150	°C			
Ambient temperature range		T _{amb}	- 55 to + 100	°C			
Soldering temperature ⁽²⁾	max. 10 s dip soldering distance to seating plane \geq 1.5 mm	T _{sld}	260	°C			

Notes

 $^{(1)}~T_{amb}$ = 25 °C, unless otherwise specified.

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute maximum ratings for extended periods of the time can adversely affect reliability.

⁽²⁾ Refer to reflow profile for soldering conditions for surface mounted devices.

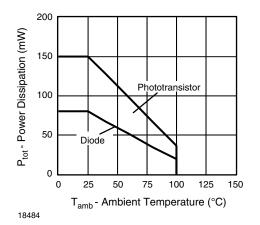


Fig. 1 - Permissible Power Dissipation vs. Ambient Temperature

ELECTRICAL CHARACTERISTICS							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
INPUT				•			
Forward voltage	I _F = 5 mA	V _F		1.15	1.4	V	
Reverse current	V _R = 6.0 V	I _R		0.01	10	μΑ	
Capacitance	V _R = 0 V, f = 1.0 MHz	C _O		14		pF	
Thermal resistance		R _{thJA}		750		K/W	
OUTPUT							
Collector emitter leakage current	V _{CE} = 20 V	I _{CEO}			100	nA	
Collector emitter capacitance	V _{CE} = 5.0 V, f = 1.0 MHz	C _{CE}		2.8		pF	
Thermal resistance		R _{thJA}		500		K/W	

Optocoupler Phototransistor Output, SOP-4, Mini-Flat Package **Vishay Semiconductors**

ELECTRICAL CHARACTERISTICS							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
COUPLER							
Collector emitter saturation voltage	I _F = 10 mA, I _C = 2.0 mA	V _{CEsat}		1.0	0.3	V	
Coupling capacitance	f = 1.0 MHz	C _C		0.3		pF	

Note

 $T_{amb} = 25$ °C, unless otherwise specified.

Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements.

CURRENT TRANSFER RATIO							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
	I _F = 5.0 mA, V _{CE} = 5.0 V	SFH690ABT	CTR	50		300	%
		SFH690AT	CTR	50		150	%
I _C /I _F		SFH690BT	CTR	100		300	%
		SFH690CT	CTR	100		200	%
		SFH690DT	CTR	200		400	%

SWITCHING CHARACTERISTICS							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Rise time	I_{C} = 2.0 mA, V_{CC} = 5 V, R_{L} = 100 Ω	t _r		3.0		μs	
Fall time	I_{C} = 2.0 mA, V_{CC} = 5 V, R_{L} = 100 Ω	t _f		4.0		μs	
Turn-on time	I_{C} = 2.0 mA, V_{CC} = 5 V, R_{L} = 100 Ω	t _{on}		5.0		μs	
Turn-off time	I_{C} = 2.0 mA, V_{CC} = 5 V, R_{L} = 100 Ω	t _{off}		3.0		μs	

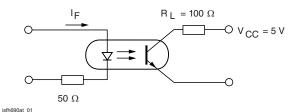
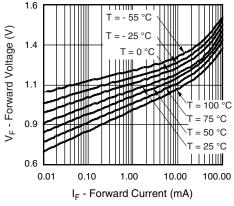


Fig. 2 - Switching Operation (without Saturation)

SAFETY AND INSULATION RATINGS								
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT		
Climatic classification (according to IEC 68 part 1)				55/100/21				
Comparative tracking index		CTI	175		399			
V _{IOTM}			6000			V		
V _{IORM}			707			V		
P _{SO}					350	mW		
I _{SI}					150	mA		
T _{SI}					175	°C		
Creepage distance			5			mm		
Clearance distance			5			mm		
Insulation thickness			0.4			mm		

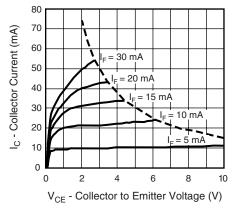
Note

As per IEC 60747-5-2, § 7.4.3.8.1, this optocoupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with the safety ratings shall be ensured by means of protective circuits.



Vishay Semiconductors

Optocoupler Phototransistor Output, SOP-4, Mini-Flat Package


TYPICAL CHARACTERISTICS

T_{amb} = 25 °C, unless otherwise specified

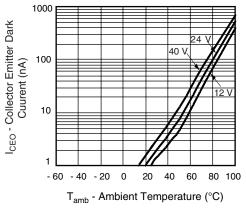

isfh690at_02

Fig. 3 - Diode Forward Voltage vs. Forward Current

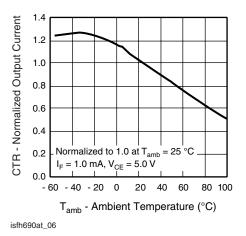
isfh690at_03

Fig. 4 - Collector Current vs. Collector Emitter Voltage

isfh690at_04

Fig. 5 - Collector to Emitter Dark Current vs. Ambient Temperature

Fig. 6 - Collector Current vs. Collector Emitter Saturation Voltage



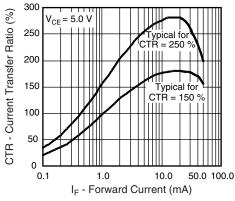
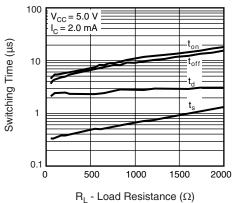

Fig. 7 - Normalized Output Current vs. Ambient Temperature

Fig. 8 - Normalized Output Current vs. Ambient Temperature



Optocoupler Phototransistor Output, SOP-4, Mini-Flat Package Vishay Semiconductors

isfh690at_08

Fig. 9 - Current Transfer Ratio vs. Forward Current

isfh690at_09

Fig. 10 - Switching Time vs. Load Resistance

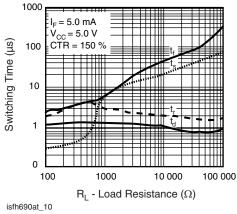
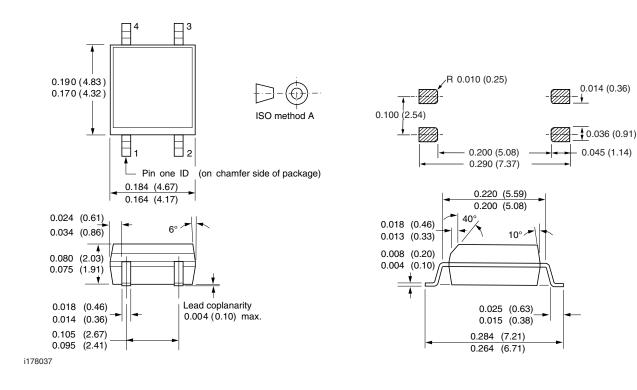


Fig. 11 - Switching Time vs. Load Resistance



0.045 (1.14)

Vishay Semiconductors

Optocoupler Phototransistor Output, SOP-4, Mini-Flat Package

PACKAGE DIMENSIONS in inches (millimeters)

Optocoupler Phototransistor Output, SOP-4, Mini-Flat Package Vishay Semiconductors

OZONE DEPLETING SUBSTANCES POLICY STATEMENT

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively.
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA.
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Triac & SCR Output Optocouplers category:

Click to view products by Vishay manufacturer:

Other Similar products are found below :

IL4218-X019 MOC3063S-TA ILD207-X001T ILD615-1X007T VO2223-X001 VO4254H WPPCT-N1066A WPPCT-N1566A WPPCT-Z546D 523170E WPPCT-Z546A WPPCT-Z1046D WPPCT-Z1046A WPPCT-N566D WPPCT-N566A WPPCT-N1566D FODM3053V_NF098 VO4258D VO4256D VOM160R-X001T MOC3071SM VOM160P-X001T IL4116-X007 MOC3072SM VO0601-X001T MOC3020XSM MOC3021X MOC3021XSM MOC3022X MOC3023SR2M MOC3041SM MOC3042XSM MOC3043SR2M MOC3043X MOC3043XSM MOC3052SM MOC3063X MOC3081X MOC3081XSM BRT12H-X001 IS620XSM IS623X VO3062-X007T VO3063-X006 MOC3020 MOC3020X MOC3022 MOC3022XSM MOC3023X MOC3023XSM