Standard Metal Film Leaded Resistors

A homogeneous film of metal alloy is deposited on a high grade ceramic body. After a helical groove has been cut in the resistive layer, tinned connecting leads of electrolytic copper are welded to the end-caps.
The resistors are coated with a colored lacquer (light-blue for type SFR16S; light-green for type SFR25 and red-brown for type SFR25H) which provides electrical, mechanical, and climatic protection. The encapsulation is resistant to all cleaning solvents in accordance with IEC 60068-2-45.

FEATURES

- Small size (SFR16S: 0204, SFR25 / SFR25H: 0207)
- Low noise (max. $1.5 \mu \mathrm{~V} / \mathrm{V}$ for $R>1 \mathrm{M} \Omega$)
- Compatible to both lead (Pb)-free and lead containing soldering processes
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- General purpose resistors

DESCRIPTION	SFR16S	SFR25	SFR25H
DIN size	0204	0207	0207
Resistance range	1Ω to $3 \mathrm{M} \Omega$; jumper (0Ω)	0.22Ω to $10 \mathrm{M} \Omega$; jumper (0Ω)	0.22Ω to $10 \mathrm{M} \Omega$
Resistance tolerance		± 5 \%; ± 1 \%	
Temperature coefficient		$\pm 250 \mathrm{ppm} / \mathrm{K} ; \pm 100 \mathrm{ppm} / \mathrm{K}$	
Rated dissipation, P_{70}	0.5 W	0.4 W	0.5 W
Thermal resistance	170 K/W	200 K/W	$150 \mathrm{~K} / \mathrm{W}$
Operating voltage, $U_{\text {max }}$. AC/DC	200 V	250 V	350 V
Operating temperature range	$-55{ }^{\circ} \mathrm{C}$ to $155{ }^{\circ} \mathrm{C}$		
Permissible film temperature	$155^{\circ} \mathrm{C}$		
Max. resistance change at rated dissipation $\mid \Delta R / R$ max.\|, after 1000 h	$\pm(2 \% R+0.05 \Omega)$		

Note

- R value is measured with probe distance of $24 \mathrm{~mm} \pm 1 \mathrm{~mm}$ using 4-terminal method.

TYPE	TOLERANCE	TCR	RESISTANCE	E-SERIES
SFR16S	$\pm 5 \%$	$\pm 250 \mathrm{ppm} / \mathrm{K}$	1Ω to $\leq 4.7 \Omega$	E24
		$\pm 100 \mathrm{ppm} / \mathrm{K}$	4.7Ω to $100 \mathrm{k} \Omega$	
		$\pm 250 \mathrm{ppm} / \mathrm{K}$	$>100 \mathrm{k} \Omega$ to $3 \mathrm{M} \Omega$	
	$\pm 1 \%$	$\pm 100 \mathrm{ppm} / \mathrm{K}$	5.6Ω to $100 \mathrm{k} \Omega$	E24; E96
		$\pm 250 \mathrm{ppm} / \mathrm{K}$	$>100 \mathrm{k} \Omega$ to $976 \mathrm{k} \Omega$	
	Jumper (0 Ω)	-	$\leq 30 \mathrm{~m} \Omega$; $I_{\text {max. }}=3 \mathrm{~A}$	-
SFR25, SFR25H	$\pm 5 \%$	$\pm 250 \mathrm{ppm} / \mathrm{K}$	0.22Ω to 4.7Ω	E24
		$\pm 100 \mathrm{ppm} / \mathrm{K}$	$>4.7 \Omega$ to $1 \mathrm{M} \Omega$	
		$\pm 250 \mathrm{ppm} / \mathrm{K}$	$>1 \mathrm{M} \Omega$ to $10 \mathrm{M} \Omega$	
	$\pm 1 \%$	$\pm 250 \mathrm{ppm} / \mathrm{K}$	1Ω to 4.7Ω	E24; E96
		$\pm 100 \mathrm{ppm} / \mathrm{K}$	$>4.7 \Omega$ to $1 \mathrm{M} \Omega$	
		$\pm 250 \mathrm{ppm} / \mathrm{K}$	$>1 \mathrm{M} \Omega$ to $10 \mathrm{M} \Omega$	
	Jumper (0 Ω) ${ }^{(1)}$	-	$\leq 30 \mathrm{~m}$; $I_{\text {max. }}=5 \mathrm{~A}$	-

Note
${ }^{(1)}$ Jumper is only available for SFR25.

PART NUMBER AND PRODUCT DESCRIPTION

PART NUMBER: SFR2500001001FA500

PRODUCT DESCRIPTION: SFR25 1 \% A5 1K0

A5
PACKAGING ${ }^{(1)}$
N4
A5
A1
R5

Notes

- The products can be ordered using either the PRODUCT DESCRIPTION or the PART NUMBER.
${ }^{(1)} \mathrm{N} 4$ packaging indicates SFR25 and SFR25H radial version.

PACKAGING						
TYPE	CODE	QUANTITY	PACKAGING STYLE	WIDTH	PITCH	DIMENSIONS
SFR16S	A5	5000	Taped acc. to IEC 60286-1 fan-folded in a box	52 mm	5 mm	$75 \mathrm{~mm} \times 73 \mathrm{~mm} \times 270 \mathrm{~mm}$
	R5	5000	Taped acc. to IEC 60286-1 on a reel			$92 \mathrm{~mm} \times 278 \mathrm{~mm} \times 278 \mathrm{~mm}$
	A1 ${ }^{(1)}$	1000	Taped acc. to IEC 60286-1 fan-folded in a box			$75 \mathrm{~mm} \times 28 \mathrm{~mm} \times 262 \mathrm{~mm}$
SFR25, SFR25H	A5	5000	Taped acc. to IEC 60286-1 fan-folded in a box	52 mm	5 mm	$75 \mathrm{~mm} \times 98 \mathrm{~mm} \times 270 \mathrm{~mm}$
	R5	5000	Taped acc. to IEC 60286-1 on a reel			$93 \mathrm{~mm} \times 300 \mathrm{~mm} \times 298 \mathrm{~mm}$
	A1 ${ }^{(1)}$	1000	Taped acc. to IEC 60286-1 fan-folded in a box			$75 \mathrm{~mm} \times 28 \mathrm{~mm} \times 262 \mathrm{~mm}$
	N4 ${ }^{(2)}$	4000	Taped acc. to IEC 60286-2 fan-folded in a box	-	12.7 mm	$45 \mathrm{~mm} \times 262 \mathrm{~mm} \times 330 \mathrm{~mm}$

Notes

${ }^{(1)}$ A1 packaging only available for resistors with $\pm 5 \%$ tolerance.
${ }^{(2)} \mathrm{N} 4$ packaging only available for SFR25 and SFR25H radial version.

MARKING

The nominal resistance and tolerance are marked on the resistor using four or five colored bands in accordance with IEC 60062, marking codes for resistors and capacitors.

FUNCTIONAL PERFORMANCE

Derating

Maximum dissipation ($\mathrm{P}_{\mathrm{max}}$.) in percentage of rated power as a function of the ambient temperature ($\mathrm{T}_{\mathrm{amb}}$)

SFR16S Hot-spot temperature rise (ΔT) as a function of dissipated power

Note

- The maximum permissible hot-spot temperature is $155^{\circ} \mathrm{C}$.

SFR16S Pulse on a regular basis; maximum permissible peak pulse power ($\hat{P}_{\text {max. }}$.) as a function of pulse duration (t_{i})

SFR16S Pulse on a regular basis; maximum permissible peak pulse voltage ($\hat{U}_{\text {max. }}$) as a function of pulse duration $\left(t_{\mathrm{i}}\right)$

SFR25 Pulse on a regular basis; maximum permissible peak pulse power ($\hat{P}_{\text {max. }}$) as a function of pulse duration (t_{i})

SFR25 Pulse on a regular basis; maximum permissible peak pulse voltage ($\hat{U}_{\text {max. }}$) as a function of pulse duration $\left(t_{i}\right)$

SFR25H Pulse on a regular basis; maximum permissible peak pulse power ($\hat{P}_{\text {max. }}$) as a function of pulse duration (t_{i})

SFR25H Pulse on a regular basis; maximum permissible peak pulse voltage ($\left.\hat{U}_{\text {max. }}\right)$ as a function of pulse duration $\left(t_{i}\right)$

TESTS PROCEDURES AND REQUIREMENTS

All tests are carried out in accordance with the following specifications:

- EN 60115-1, generic specification (includes tests)

The test and requirements table contains only the most important tests. For the full test schedule refer to the documents listed above.

The tests are carried out in accordance with IEC 60068-2-xx test method and under standard atmospheric conditions in accordance with IEC 60068-1, 5.3.

Unless otherwise specified the following values apply:

- Temperature: $15^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$
- Relative humidity: 45 \% to 75 \%
- Air pressure: 86 kPa to 106 kPa (860 mbar to 1060 mbar). For performing some of the tests, the components are mounted on a test board in accordance with IEC 60115-1, 4.31. In test procedures and requirements table, only the tests and requirements are listed with reference to the relevant clauses of IEC 60115-1 and IEC 60068-2-xx test methods. A short description of the test procedure is also given.

$\begin{aligned} & \text { IEC } \\ & \text { 60115-1 } \\ & \text { CLAUSE } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { IEC } \\ \text { 60068-2 } \\ \text { TEST } \\ \text { METHOD } \end{array}$	TEST	PROCEDURE	REQUIREMENTS PERMISSIBLE CHANGE ($\Delta R_{\text {max }}$.)				
4.5	-	Resistance	-	± 5 \%; ± 1 \%				
4.8	-	Temperature coefficient	$\begin{aligned} & \text { At }(20 /-55 / 20)^{\circ} \mathrm{C} \\ & \text { and }(20 / 155 / 20)^{\circ} \mathrm{C} \end{aligned}$	$\pm 250 \mathrm{ppm} / \mathrm{K} ; \pm 100 \mathrm{ppm} / \mathrm{K}$				
4.12	-	Noise	IEC 60195		< $68 \mathrm{k} \Omega$	$\begin{gathered} 68 \mathrm{k} \Omega \text { to } \\ 100 \mathrm{k} \Omega \end{gathered}$	$\begin{array}{\|c} \hline>100 \mathrm{k} \Omega \text { to } \\ 1 \mathrm{M} \Omega \end{array}$	$>1 \mathrm{M} \Omega$
				SFR16S	$\leq 0.1 \mu \mathrm{~V} / \mathrm{N}$	$\leq 0.5 \mu \mathrm{~V} / \mathrm{V}$	$\leq 1.5 \mu \mathrm{~V} / \mathrm{V}$	$\leq 1.5 \mu \mathrm{~V} / \mathrm{V}$
				SFR25, SFR25H	$\leq 0.1 \mu \mathrm{~V} / \mathrm{N}$	$\leq 0.1 \mu \mathrm{~V} / \mathrm{V}$	$\leq 0.1 \mu \mathrm{~V} / \mathrm{N}$	$\leq 1.5 \mu \mathrm{~V} / \mathrm{V}$
4.13	-	Short time overload	Room temperature; $P=6.25 \times P_{\mathrm{n}} ;$ (voltage not more than 2 x limiting voltage); 5 s	$\pm(0.25 \% R+0.05 \Omega)$				
4.16	$\begin{gathered} 21(\mathrm{Ua} 1) \\ 21 \text { (Ub) } \\ 21(\mathrm{Uc}) \\ \hline \end{gathered}$	Robustness of terminations	Tensile, bending, and torsion	$\pm(0.25 \% R+0.05 \Omega)$				
4.17	20 (Ta)	Solderability	at $+235{ }^{\circ} \mathrm{C} ; 2 \mathrm{~s} ;$ solder bath method; SnPb40 at $+245^{\circ} \mathrm{C} ; 3 \mathrm{~s} ;$ solder bath method; SnAg3Cu0.5	Good tinning ($\geq 95 \%$ covered); no damage				
4.18	20 (Tb)	Resistance to soldering heat	Unmounted components $(260 \pm 5)^{\circ} \mathrm{C} ;(10 \pm 1) \mathrm{s}$	$\pm(0.25 \% R+0.05 \Omega)$				
4.19	14 (Na)	Rapid change of temperature	30 min at $-55^{\circ} \mathrm{C}$ and 30 min at $+155^{\circ} \mathrm{C}$; 5 cycles	$\pm(0.25 \% R+0.05 \Omega)$				
4.20	29 (Eb)	Bump	3×1500 bumps in 3 directions; 40 g	$\pm(0.25 \% R+0.05 \Omega)$; no damage				
4.22	6 (Fc)	Vibration	10 sweep cycles per direction; 10 Hz to 2000 Hz 1.5 mm or $200 \mathrm{~m} / \mathrm{s}^{2}$	$\pm(0.25 \% R+0.05 \Omega)$; no damage				
4.23	2 (Ba)	Climatic sequence: Dry heat	$155^{\circ} \mathrm{C} ; 16 \mathrm{~h}$ $55^{\circ} \mathrm{C} ; 24 \mathrm{~h} ;$ 90 \% to 100 \% RH; 1 cycle $-55^{\circ} \mathrm{C} ; 2 \mathrm{~h}$ 8.5 kPa ; $2 \mathrm{~h} ; 15^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ $55^{\circ} \mathrm{C} ; 5$ days; 95 \% to 100 \% RH; 5 cycles apply rated power for 1 min					
4.23 .2								
4.23 .3	30 (Db)	Damp heat, cyclic						
4.23 .4	1 (Aa)	Cold						
4.23 .5	13 (M)	Low air pressure						
$\begin{aligned} & 4.23 .6 \\ & 4.23 .7 \end{aligned}$	30 (Db)	Damp heat, cyclic DC load		SFR16S, SFR25, SFR25H	$\pm(1 \% R+0.05 \Omega)$; no visible damage $\pm(1 \% R+0.05 \Omega)$; no visible damage $\pm 2 \% \mathrm{R}$; no visible damage			

TEST PROCEDURES AND REQUIREMENTS

IEC 60115-1 CLAUSE	IEC 60068-2 MEST METHOD	TEST	PROCEDURE	REQUIREMENTS PERMISSIBLE CHANGE ($\Delta \boldsymbol{R}_{\text {max. }}$)
4.24	$78(\mathrm{Cab})$	Damp heat (steady state)	$(40 \pm 2)^{\circ} \mathrm{C} ; 56$ days; $(93 \pm 3) \% \mathrm{RH}$	$\pm(2 \% R+0.05 \Omega)$
4.25 .1		Endurance (at $\left.70^{\circ} \mathrm{C}\right)$	$U=$$\sqrt{P_{70} \times R}$ or $U=U_{\text {max }} ;$ 1.5 h on; 0.5 h off $700^{\circ} \mathrm{C} ; 1000 \mathrm{~h}$	$\pm(2 \% R+0.05 \Omega)$

DIMENSIONS

DIMENSIONS - Leaded resistor types, mass and relevant physical dimensions					
TYPE	$\begin{gathered} \varnothing D_{\text {max }} \\ (\mathrm{mm}) \end{gathered}$	$\begin{aligned} & \mathrm{L}_{1 \text { max. }} \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \mathrm{L}_{2 \text { max. }} \\ & (\mathrm{mm}) \end{aligned}$	$\begin{gathered} \quad \begin{array}{l} d \\ (\mathrm{~mm}) \end{array} \end{gathered}$	$\begin{gathered} \text { MASS } \\ (\mathrm{mg}) \end{gathered}$
SFR16S	1.9	3.5	4.1	0.45 ± 0.05	102
SFR25	2.5	6.5	7.5	0.58 ± 0.05	205
SFR25H	2.5	6.5	7.5	0.58 ± 0.05	205

SFR25, SFR25H WITH RADIAL TAPING

DIMENSIONS in millimeters		
Pitch of components	P	12.7 ± 1.0
Feed-hole pitch	P_{0}	12.7 ± 0.2
Feed-hole center to lead at topside at the tape	P_{1}	3.85 ± 0.5
Feed-hole center to body center	P_{2}	6.35 ± 1.0
Lead-to-lead distance	F	$4.8+0.7 /-0$
Tape width	W	18.0 ± 0.5
Minimum hold down tape width	W_{0}	5.5
Maximum component height	H 1	29
Lead wire clinch height	H_{0}	16.5 ± 0.5
Height of component from tape center	H	19.5 ± 1
Feed-hole diameter	D_{0}	4.0 ± 0.2
Maximum length of snipped lead	L	11.0
Minimum lead wire (tape portion) shortest lead	L_{1}	2.5

Note

- Please refer to document "Packaging" for more detail (www.vishay.com/doc?28721).

HISTORICAL 12NC INFORMATION

- The resistors had a 12-digit numeric code starting with 23.
- The subsequent 6 digits for 1% or 7 digits for 5% indicated the resistor type and packaging.
- The remaining digits indicated the resistance value:
- The first 3 digits for 1% or 2 digits for 5% indicated the resistance value.
- The last digit indicated the resistance decade.

Resistance Decade for ± 5 \% Tolerance

RESISTANCE DECADE	LAST DIGIT
0.10Ω to 0.91Ω	7
1Ω to 9.1Ω	8
$10 \Omega \circ 91 \Omega$	9
100Ω to 910Ω	1
$1 \mathrm{k} \Omega$ to $9.1 \mathrm{k} \Omega$	2
$10 \mathrm{k} \Omega$ to $91 \mathrm{k} \Omega$	3
$100 \mathrm{k} \Omega$ to $910 \mathrm{k} \Omega$	4
$1 \mathrm{M} \Omega$ to $9.1 \mathrm{M} \Omega$	5
$=10 \mathrm{M} \Omega$	6

Resistance Decade for ± 1 \% Tolerance

RESISTANCE DECADE	LAST DIGIT
1Ω to 9.76Ω	8
10Ω to 97.6Ω	9
100Ω to 976Ω	1
$1 \mathrm{k} \Omega$ to $9.76 \mathrm{k} \Omega$	2
$10 \mathrm{k} \Omega$ to $97.6 \mathrm{k} \Omega$	3
$100 \mathrm{k} \Omega$ to $976 \mathrm{k} \Omega$	4
$1 \mathrm{M} \Omega$ to $9.76 \mathrm{M} \Omega$	5
$=10 \mathrm{M} \Omega$	6

12NC Example

The 12NC of a SFR25 resistor, value $5600 \Omega \pm 5 \%$, taped on a bandolier of 5000 units in ammopack was: 232218143562.

HISTORICAL 12NC - Resistor type and packaging					
TYPE	TOL.	23..			
		BANDOLIER IN AMMOPACK			BANDOLIER ON REEL
		RADIAL TAPED	STRAIGHT LEADS		STRAIGHT LEADS
		4000 UNITS	1000 UNITS	5000 UNITS	5000 UNITS
SFR16S	± 5 \%	-	.. 22187 73...	.. 22187 53...	.. 06187 23...
	± 1 \%	-	-	.. 06187 3...	.. 06187 1....
	Jumper	-	-	.. 0618790013	.. 2218790346
SFR25	± 5 \%	.. 06184 03...	.. 22181 53...	.. 22181 43...	.. 22181 63...
	± 1 \%	-	-	.. $221882 \ldots$.. $061818 . . .$.
	Jumper	-	.. 2218190018	.. 2218190019	.. 0618190011
SFR25H	± 5 \%	.. 06186 03...	.. 22186 16...	.. $2218676 . .$.	.. 06186 63...
	± 1 \%	-	-	.. 22186 3....	.. 061868 8....

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multilayer Ceramic Capacitors MLCC - Leaded category:

Click to view products by Vishay manufacturer:

Other Similar products are found below :
010-007220-002REV A M39014/01-1210V M39014/01-1281V M39014/01-1335V M39014/01-1571V M39014/01-1578V M39014/01-1593 M39014/02-1265V M39014/02-1347 M39014/02-1350 M39014/02-1356VTR1 M39014/22-0167 M39014/22-0734 87043-49 Q52-DK AR215F103K4RTR2-3323 C0603C309C5GACTU-CUT-TAPE C410C221K1G5TATR C420C102J1G5TATR C430C104M1U5TATR SL155C222MAB FK26X7R2E104KN006 CCR06CG183GRV CFB1/2C101J CFB1/2C102J CN20C102K M39014/01-1317 M39014/011572V M39014/01-1594V M39014/02-1236 M39014/02-1321V M39014/02-1345V M39014/22-0351 M39014/22-0695 M39014/220767 M39014/220788 M39014/22-1005 MA405E334MAA MD015A103KAB SL301E105MAB CCR05CG242FRV KTD101B684M32A0B00 CCR07CG473KR CCR05CG820JP TKC-TMC1206-05-1501-J?? TKC-TMC1206-05-1801-J TKC-TMC1206-05-20R0-F TKC-

TMC1206-05-3901-J TKC-TMC1206-05-44R2-F TKC-TMC1206-05-4703-J??

