## Load Switch with Level-Shift

SOT-363


Marking Code: VD

| PRODUCT SUMMARY |  |
| :--- | :---: |
| $\mathrm{V}_{\mathrm{DS}}(\mathrm{V})$ | 12 |
| $\mathrm{R}_{\mathrm{DS}(\mathrm{on})}(\Omega)$ at $\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$ | 0.200 |
| $\mathrm{R}_{\mathrm{DS}(\mathrm{on})}(\Omega)$ at $\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}$ | 0.300 |
| $\mathrm{R}_{\mathrm{DS} \text { (on) }}(\Omega)$ at $\mathrm{V}_{\mathrm{IN}}=1.8 \mathrm{~V}$ | 0.508 |
| $\mathrm{I}_{\mathrm{D}}(\mathrm{A})$ | $\pm 1.1$ |
| Configuration | Level-shift |

## APPLICATION CIRCUITS



## COMPONENTS

| R1 | Pull-up resistor | Typical $10 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega^{\mathrm{a}}$ |
| :---: | :---: | :---: |
| R2 | Optional slew-rate control | Typical 0 to $100 \mathrm{k} \Omega^{\mathrm{a}}$ |
| C1 | Optional slew-rate control | Typical 1000 pF |

## Note

a. Minimum R1 value should be at least $10 \times \mathrm{R} 2$ to ensure Q1 turn-on

## FEATURES

- Low R ${ }_{\text {DS(on) }}$ TrenchFET ${ }^{\circledR}$
- 1.8 V to 12 V input
- 1.5 V to 8 V logic level control
- Low profile, small footprint SC-70-6 package
- 2000 V ESD protection on input switch, Von/OFF
- Adjustable slew-rate
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912


## APPLICATIONS

- Load switch with level-shift
- Slew-rate control
- Portable / consumer devices


## DESCRIPTION

The Si1865DDL includes a p - and n -channel MOSFET in a single SC-70-6 package. The low on-resistance p-channel TrenchFET is tailored for use as a load switch. The n-channel, with an external resistor, can be used as a level-shift to drive the p-channel load-switch. The n-channel MOSFET has internal ESD protection and can be driven by logic signals as low as 1.5 V . The Si1865DDL operates on supply lines from 1.8 V to 12 V , and can drive loads up to 1.1 A.


Switching Variation $R 2$ at $\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}, \mathrm{R} 1=20 \mathrm{k} \Omega$
The Si1865DDL is ideally suited for high-side load switching in portable applications. The integrated $n$-channel level-shift device saves space by reducing external components. The slew rate is set externally so that rise-times can be tailored to different load types.

## FUNCTIONAL BLOCK DIAGRAM

Si1865DDL


| ORDERING INFORMATION |  |
| :--- | :--- |
| Package | SC-70 |
| Lead $(\mathrm{Pb})$-free and halogen-free | Si1865DDL-T1-GE3 |


| ABSOLUTE MAXIMUM RATINGS ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted) |  |  |  |
| :---: | :---: | :---: | :---: |
| PARAMETER | SYMBOL | LIMIT | UNIT |
| Input voltage | $\mathrm{V}_{\text {IN }}\left(\mathrm{V}_{\text {DS2 } 2}\right)$ | 12 | V |
| On/off voltage | $\mathrm{V}_{\text {ON/OFF }}$ | 8 |  |
|  | IL | $\pm 1.1$ | A |
| Load current ${ }^{\text {a }}$ ( ${ }^{\text {Pulsed } \mathrm{b}, \mathrm{c}}$ |  | $\pm 5$ |  |
| Continuous intrinsic diode conduction ${ }^{\text {a }}$ | Is | -0.3 |  |
| Maximum power dissipation ${ }^{\text {a }}$ | $\mathrm{P}_{\mathrm{D}}$ | 0.357 | W |
| Operating junction and storage temperature range | $\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$ | -55 to 150 | ${ }^{\circ} \mathrm{C}$ |
| ESD rating, MIL-STD-883D human body model ( $100 \mathrm{pF}, 1500 \Omega$ ) | ESD | 2 | kV |


| THERMAL RESISTANCE RATINGS |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| PARAMETER | SYMBOL | TYPICAL | MAXIMUM | UNIT |
| Maximum junction-to-ambient (continuous current) ${ }^{\text {a }}$ | $\mathrm{R}_{\text {thJA }}$ | 290 | 350 |  |
| Maximum junction-to-foot (Q2) | $\mathrm{R}_{\text {thJF }}$ | 250 | 300 |  |


| SPECIFICATIONS $\left(T_{J}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYMBOL | TEST CONDITIONS | MIN. | TYP. | MAX. | UNIT |
| Off Characteristics |  |  |  |  |  |  |
| Reverse leakage current | $\mathrm{I}_{\text {FL }}$ | $\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {ON/OFF }}=0 \mathrm{~V}$ | - | - | 1 | $\mu \mathrm{A}$ |
| Diode forward voltage | $\mathrm{V}_{\text {SD }}$ | $\mathrm{I}_{\mathrm{S}}=-0.8 \mathrm{~A}$ | - | -0.84 | -1.2 | V |
| On Characteristics |  |  |  |  |  |  |
| Input voltage range | $\mathrm{V}_{\text {IN }}$ |  | 1.8 | - | 12 | V |
| On-resistance (p-channel) | $\mathrm{R}_{\mathrm{DS} \text { (on) }}$ | $\mathrm{V}_{\text {ON/OFF }}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.1 \mathrm{~A}$ | - | 0.165 | 0.200 | $\Omega$ |
|  |  | $\mathrm{V}_{\text {ON/OFF }}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.9 \mathrm{~A}$ | - | 0.250 | 0.300 |  |
|  |  | $\mathrm{V}_{\text {ON/OFF }}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=1.8 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.2 \mathrm{~A}$ | - | 0.376 | 0.508 |  |
| On-state (p-channel) drain-current | $\mathrm{I}_{\mathrm{D} \text { (on) }}$ | $\mathrm{V}_{\text {IN-OUT }} \leq 0.2 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {ON/OFF }}=1.5 \mathrm{~V}$ | 1 | - | - | A |
|  |  | $\mathrm{V}_{\text {IN-OUT }} \leq 0.3 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=3 \mathrm{~V}, \mathrm{~V}_{\text {ON/OFF }}=1.5 \mathrm{~V}$ | 1 | - | - |  |

## Notes

a. Surface mounted on FR4 board
b. $\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {ON/OFF }}=8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
c. Pulse test: pulse width $\leq 300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Si1865DDL

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)


Output Characteristics

$\mathrm{V}_{\text {DROP }}$ Vs. $\mathrm{I}_{\mathrm{L}}$ at $\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}$

$V_{\text {DROP }}$ vs. $V_{I N}$ at $I_{L}=1 \mathrm{~A}$

$\mathrm{V}_{\text {DROP }}$ vs. $\mathrm{I}_{\mathrm{L}}$ at $\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$

$\mathrm{V}_{\text {DROP }}$ vs. $\mathrm{I}_{\mathrm{L}}$ at $\mathrm{V}_{\mathrm{IN}}=1.8 \mathrm{~V}$


Normalized On-Resistance vs. Junction Temperature

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)


On-Resistance vs. Input Voltage


Switching Variation R2 at $\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{R} 1=20 \mathrm{k} \Omega$


Switching Variation R 2 at $\mathrm{V}_{\mathrm{IN}}=1.8 \mathrm{~V}, \mathrm{R} 1=20 \mathrm{k} \Omega$


Source-Drain Diode Forward Voltage


Switching Variation R2 at $\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}, \mathrm{R} 1=20 \mathrm{k} \Omega$


Switching Variation R2 at $\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{R} 1=300 \mathrm{k} \Omega$

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)


Switching Variation R2 at $\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}, \mathrm{R} 1=300 \mathrm{k} \Omega$


Switching Variation R2 at $\mathrm{V}_{\mathrm{IN}}=1.8 \mathrm{~V}, \mathrm{R} 1=300 \mathrm{k} \Omega$


Safe Operating Area, Junction-to-Foot


Normalized Thermal Transient Impedance, Junction-to-Ambient
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?62888.

SC-70: 6-LEADS


| Dim | MILLIMETERS |  |  | INCHES |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Min | Nom | Max | Min | Nom | Max |  |
| A | 0.90 | - | 1.10 | 0.035 | - | 0.043 |  |
| $\mathbf{A}_{\mathbf{1}}$ | - | - | 0.10 | - | - | 0.004 |  |
| $\mathbf{A}_{\mathbf{2}}$ | 0.80 | - | 1.00 | 0.031 | - | 0.039 |  |
| b | 0.15 | - | 0.30 | 0.006 | - | 0.012 |  |
| C | 0.10 | - | 0.25 | 0.004 | - | 0.010 |  |
| D | 1.80 | 2.00 | 2.20 | 0.071 | 0.079 | 0.087 |  |
| E | 1.80 | 2.10 | 2.40 | 0.071 | 0.083 | 0.094 |  |
| $\mathbf{E}_{\mathbf{1}}$ | 1.15 | 1.25 | 1.35 | 0.045 | 0.049 | 0.053 |  |
| e | 0.65 BSC |  |  |  |  |  |  |
| $\mathbf{e}_{\mathbf{1}}$ | 1.20 | 1.30 | 1.40 | 0.026 BSC |  |  |  |
| L | 0.10 | 0.20 | 0.30 | 0.004 | 0.051 | 0.055 |  |
| $\mathbf{\alpha}$ | $7^{\circ}$ Nom |  |  |  |  |  |  |
| ECN: S-03946-Rev. B, 09-Jul-01 <br> DWG: 5550 | 0.012 |  |  |  |  |  |  |

## Application Note 826

Vishay Siliconix

## RECOMMENDED MINIMUM PADS FOR SC-70: 6-Lead



Recommended Minimum Pads
Dimensions in Inches/(mm)

Return to Index

## Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by Vishay manufacturer:
Other Similar products are found below :
TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G DML1008LDS-7 KTS1670EDA-TR KTS1640QGDV-TR KTS1641QGDV-TR NCV459MNWTBG FPF2260ATMX U6513A U6119S MIC2012YM-TR MAX14919ATP+ MC33882PEP TPS2021IDRQ1 TPS2104DBVR MIC2098-1YMT-TR MIC94062YMT TR MP6231DN-LF MIC2075-2YM MIC2095-2YMT-TR MIC94068YML-TR SIP32461DB-T2-GE1 NCP335FCT2G TCK105G,LF(S AP2151DSG-13 MIC94094YC6-TR MIC94064YC6-TR MIC2505-1YM MIC94305YMT-TR MIC94081YFT-TR MIC94042YFL-TR MIC94041YFL-TR MIC2005-1.2YM6-TR TPS2032QDRQ1 SIP32510DT-T1GE3 NCP333FCT2G NCP331SNT1G TPS2092DR TPS2063DR TPS2042P MIC2008YML-TR MIC2040-1YMM

