P-Channel 150-V (D-S) MOSFET | PRODU | CT SUMMARY | | | |---------------------|---------------------------------|---------------------------------|-----------------------| | V _{DS} (V) | $R_{DS(on)}(\Omega)$ | I _D (A) ^a | Q _g (Typ.) | | - 150 | 1.2 at V _{GS} = - 10 V | - 1.3 | 4.8 nC | | - 150 | 1.3 at V _{GS} = - 6 V | - 1.2 | 4.6 110 | #### **FEATURES** - Halogen-free According to IEC 61249-2-21 Definition - TrenchFET® Power MOSFET - 100 % UIS Tested # COMPLIANT **HALOGEN** **FREE** #### **APPLICATIONS** - Active Clamp Switch - Isolated DC/DC Converters P-Channel MOSFET | | SO-8 | | |--------------------------|----------|-----------------| | S 1
S 2
S 3
G 4 | | 8 D 7 D 6 D 5 D | | | Top View | | Ordering Information: Si4409DY-T1-E3 (Lead (Pb)-free) Si4409DY-T1-GE3 (Lead (Pb)-free and Halogen-free) | Parameter | Symbol | Limit | Unit | | | |--|------------------------|-----------------------------------|-----------------------|----|--| | Drain-Source Voltage | V _{DS} | - 150 | V | | | | Gate-Source Voltage | V _{GS} | ± 20 | v | | | | | T _C = 25 °C | | - 1.3 | | | | Continuous Prain Current (T. – 150 °C) | T _C = 70 °C | | - 1.0 | | | | Continuous Drain Current (T _J = 150 °C) | T _A = 25 °C | l _D | - 0.9 ^{b, c} | | | | | T _A = 70 °C | | - 0.7 ^{b, c} | А | | | Pulsed Drain Current | I _{DM} | - 2 | A | | | | Continuous Source Drain Diade Current | T _C = 25 °C | I- | - 1.3 | | | | Continuous Source-Drain Diode Current | T _A = 25 °C | I _S | - 0.9 ^{b, c} | | | | Avalanche Current | 0.1 m | I _{AS} | 4 | | | | Single-Pulse Avalanche Energy | L = 0.1 mH | E _{AS} | 0.8 | mJ | | | | T _C = 25 °C | | 4.6 | | | | Maximum Power Dissipation | T _C = 70 °C | ь — | 2.9 | w | | | | T _A = 25 °C | P _D | 2.2 ^{b, c} | VV | | | | T _A = 70 °C | | 1.4 ^{b, c} | | | | Operating Junction and Storage Temperature Range | | T _J , T _{stq} | - 55 to 150 | °C | | | THERMAL RESISTANCE RATINGS | | | | | | | |---|--------------|-------------------|---------|------|------|--| | Parameter | Symbol | Typical | Maximum | Unit | | | | Maximum Junction-to-Ambient ^{b, d} | t ≤ 5 s | R _{thJA} | 47 | 55 | °C/W | | | Maximum Junction-to-Foot | Steady State | R_{thJF} | 22 | 27 |] | | #### Notes: - a. T_C = 25 °C. b. Surface Mounted on 1" x 1" FR4 board. - d. Maximum under Steady State conditions is 95 °C/W. # Vishay Siliconix | Parameter | Symbol | Test Conditions | Min. | Тур. | Max. | Unit | | |---|-------------------------|--|-------|-------|--------|-------|--| | Static | | | | | | | | | Drain-Source Breakdown Voltage | V_{DS} | $V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$ | - 150 | | | V | | | V _{DS} Temperature Coefficient | $\Delta V_{DS}/T_{J}$ | I _D = - 250 μA | | - 160 | | mV/°C | | | V _{GS(th)} Temperature Coefficient | $\Delta V_{GS(th)}/T_J$ | I _D = - 250 μA | | 5.5 | | | | | Gate-Source Threshold Voltage | V _{GS(th)} | $V_{DS} = V_{GS}, I_{D} = -250 \mu A$ | - 2 | | - 4 | V | | | Gate-Source Leakage | I _{GSS} | $V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$ | | | ± 100 | nA | | | Zoro Coto Voltago Drain Correct | | V _{DS} = - 150 V, V _{GS} = 0 V | | | - 1 | | | | Zero Gate Voltage Drain Current | IDSS | V _{DS} = - 150 V, V _{GS} = 0 V, T _J = 55 °C | | | - 10 | μΑ | | | On-State Drain Current ^a | I _{D(on)} | $V_{DS} \ge -10 \text{ V}, V_{GS} = -10 \text{ V}$ | - 2 | | | Α | | | Durin Course Co Olete Besteley 3 | D | V _{GS} = - 10 V, I _D = - 0.5 A | | 0.95 | 1.2 | Ω | | | Drain-Source On-State Resistance ^a | R _{DS(on)} | V _{GS} = - 6 V, I _D = - 0.5 A | | 1.0 | 1.3 | | | | Forward Transconductance ^a | 9 _{fs} | V _{DS} = - 10 V, I _D = - 0.5 A | | 2.2 | | S | | | Dynamic ^b | | | | | | | | | Input Capacitance | C _{iss} | | | 332 | | pF | | | Output Capacitance | C _{oss} | $V_{DS} = -50 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$ | | 25 | | | | | Reverse Transfer Capacitance | C _{rss} | | | 13 | | | | | T. 10 . 0 | Qg | $V_{DS} = -75 \text{ V}, V_{GS} = -10 \text{ V}, I_{D} = -0.5 \text{ A}$ | | 7.7 | 7.7 12 | | | | Total Gate Charge | | | | 4.8 | 7.5 | | | | Gate-Source Charge | Q_{gs} | $V_{DS} = -75 \text{ V}, V_{GS} = -6 \text{ V}, I_{D} = -0.5 \text{ A}$ | | 1.5 | | nC | | | Gate-Drain Charge | Q_{gd} | | | 2.5 | | 1 | | | Gate Resistance | R_{g} | f = 1 MHz | | 9 | | Ω | | | Turn-On Delay Time | t _{d(on)} | | | 7 | 14 | | | | Rise Time | t _r | $V_{DD} = -75 \text{ V}, R_{L} = 75 \Omega$ | | 10 | 20 | | | | Turn-Off DelayTime | t _{d(off)} | $I_D \cong$ - 1 A, V_{GEN} = - 10 V, R_g = 6 Ω | | 16 | 30 | | | | Fall Time | t _f | _ | | 9 | 18 | ns | | | Turn-On Delay Time | t _{d(on)} | | | 7 | 14 | | | | Rise Time | t _r | $V_{DD} = -75 \text{ V}, R_{L} = 75 \Omega$ | | 10 | 20 | | | | Turn-Off DelayTime | t _{d(off)} | $I_D \cong -1 \text{ A}, V_{GEN} = -6 \text{ V}, R_g = 1 \Omega$ | | 13 | 25 | | | | Fall Time | t _f | _ | | 10 | 20 | | | | Drain-Source Body Diode Characterist | ics | | | | | | | | Continous Source-Drain Diode Current | I _S | T _C = 25 °C | | | - 1.3 | A | | | Pulse Diode Forward Current | I _{SM} | | | | - 2.0 | | | | Body Diode Voltage | V_{SD} | I _S = - 1 A, V _{GS} = 0 V | | - 0.7 | - 1.2 | V | | | Body Diode Reverse Recovery Time | t _{rr} | | | 43 | 70 | ns | | | Body Diode Reverse Recovery Charge | Q_{rr} | L = 12 A dl/dt = 100 A/vo T = 25 °C | | 95 | 150 | nC | | | Reverse Recovery Fall Time | t _a | $I_F = -1.2 \text{ A}, \text{ dI/dt} = 100 \text{ A/}\mu\text{s}, T_J = 25 ^{\circ}\text{C}$ | | 40 | | ns | | | Reverse Recovery Rise Time | t _b | | | 3 | | | | #### Notes: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. a. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2 %. b. Guaranteed by design, not subject to production testing. #### TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted - 50 - 25 25 50 T_J - Junction Temperature (°C) On-Resistance vs. Junction Temperature 75 100 6 0 2 Q_q - Total Gate Charge (nC) **Gate Charge** 125 150 # Vishay Siliconix # VISHAY. #### TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted #### Source-Drain Diode Forward Voltage On-Resistance vs. Gate-to-Source Temperature Single Pulse Power, Junction-to-Ambient $\label{eq:VDS} V_{DS} \mbox{ - Drain-to-Source Voltage (V)} \\ \mbox{*} V_{GS} \mbox{ > minimum } V_{GS} \mbox{ at which } R_{DS(on)} \mbox{ is specified}$ Safe Operating Area, Junction-to-Ambient #### MOSFET TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted T_C - Case Temperature (°C) #### Current Derating* Power, Junction-to-Foot Power Derating, Junction-to-Ambient ^{*} The power dissipation P_D is based on $T_{J(max)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit. # Vishay Siliconix #### TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted Normalized Thermal Transient Impedance, Junction-to-Ambient Normalized Thermal Transient Impedance, Junction-to-Foot Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?70485. ### **Legal Disclaimer Notice** Vishay #### **Disclaimer** ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners. # **X-ON Electronics** Largest Supplier of Electrical and Electronic Components Click to view similar products for MOSFET category: Click to view products by Vishay manufacturer: Other Similar products are found below: 614233C 648584F MCH3443-TL-E MCH6422-TL-E FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237 2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T) 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0#T2 RJK60S5DPK M0#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI APT1201R6BVFRG