Si8806DB

RoHS

COMPLIANT

HALOGEN

Vishay Siliconix

N-Channel 12 V (D-S) MOSFET

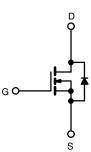
PRODUCT SUMMARY						
V _{DS} (V)	R _{DS(on)} (Ω) MAX.	I _D (A) ^a	Q _g (TYP.)			
	0.047 at V _{GS} = 4.5 V	3.9				
12	0.055 at V _{GS} = 2.5 V	3.6	6.5 nC			
	0.075 at V _{GS} = 1.8 V	3.2				

MICRO FOOT® 0.8 x 0.8

Marking Code: xx = AD

xxx = Date/Lot traceability code

Ordering Information:


Si8806DB-T2-E1 (lead (Pb)-free and halogen-free)

FEATURES

- TrenchFET[®] power MOSFET
- Small 0.8 mm x 0.8 mm outline area
- Low 0.4 mm max. profile
- Low On-resistance
- Material categorization: for definitions of
 compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

- · Load switch with low voltage drop
- Load switch for low voltage power lines
- Smart phones, tablet PCs, mobile computing

N-Channel MOSFET

ABSOLUTE MAXIMUM RATING	S (T _A = 25 °C, u	Inless otherwi	ise noted)	
PARAMETER		SYMBOL	LIMIT	UNIT
Drain-Source Voltage		V _{DS}	12	V
Gate-Source Voltage		V _{GS}	± 8	v
	T _A = 25 °C		3.9 ^a	
Continuous Drain Current (T. 150 °C)	T _A = 70 °C	Ι. Γ	3.1 ^a	
Continuous Drain Current ($T_J = 150 \ ^{\circ}C$)	T _A = 25 °C	I _D	2.8 ^b	
	T _A = 70 °C	1 [2.3 ^b	A
Pulsed Drain Current (t = 300 µs)		I _{DM}	20	
	T _A = 25 °C		0.7 ª	
Continuous Source-Drain Diode Current	T _A = 25 °C	I _S	0.4 ^b	
	T _A = 25 °C		0.9 ^a	
Mauianum Dauran Diagingtian	T _A = 70 °C		0.6 ^a	14/
Maximum Power Dissipation	T _A = 25 °C	P _D	0.5 ^b	W
	T _A = 70 °C	1 [0.3 ^b	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to +150	°C
Soldering Recommendations (Peak Temperature) ^c			260	

THERMAL RESISTANCE RATING	RMAL RESISTANCE RATINGS					
PARAMETER		SYMBOL	TYPICAL	MAXIMUM	UNIT	
Maximum Junction-to-Ambient a, d	t < 5 o	Р	105	135	°C/W	
Maximum Junction-to-Ambient ^{b, e}	t≤5s	R _{thJA}	200	260	0/10	

Notes

a. Surface mounted on 1" x 1" FR4 board with full copper, t = 5 s.

- b. Surface mounted on 1" x 1" FR4 board with minimum copper, t = 5 s.
- c. Refer to IPC/JEDEC® (J-STD-020), no manual or hand soldering.

d. Maximum under steady state conditions is 185 °C/W.

e. Maximum under steady state conditions is 330 °C/W.

S16-0637-Rev. E, 18-Apr-16

1

Document Number: 62652

www.vishay.com

Si8806DB

Vishay Siliconix

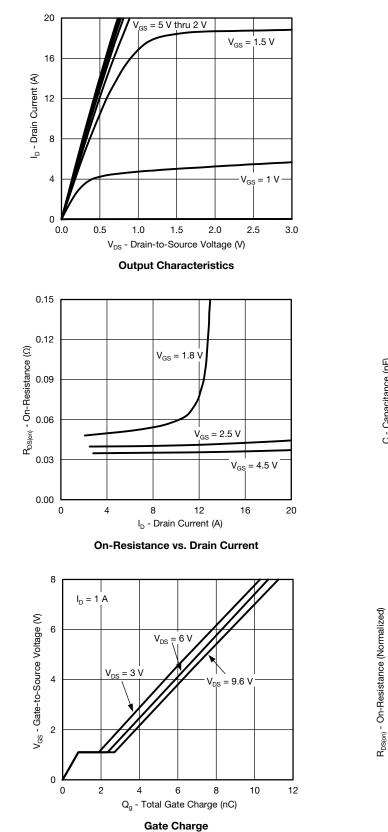
PARAMETER	SYMBOL TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT	
Static		•					
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 \text{ V}, \text{ I}_{D} = 250 \mu\text{A}$	12	-	-	V	
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	I _D = 250 μA	-	6	-	mV/°C	
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	i _D = 250 μA	-	-2.9	-		
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	0.4	-	1	V	
Gate-Source Leakage	I _{GSS}	$V_{DS} = 0 V$, $V_{GS} = \pm 8 V$	-	-	± 100	nA	
Zero Gate Voltage Drain Current		$V_{DS} = 12 V, V_{GS} = 0 V$	-	-	1		
Zero Gale voltage Drain Gurrent	I _{DSS}	V_{DS} = 12 V, V_{GS} = 0 V, T_{J} = 55 °C	-	-	10	μA	
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \geq 5 \text{ V}, V_{GS} = 4.5 \text{ V}$	10	-	-	A	
		$V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 1 \text{ A}$	-	0.035	0.047		
Drain-Source On-State Resistance ^a	R _{DS(on)}	$V_{GS} = 2.5 \text{ V}, \text{ I}_{D} = 1 \text{ A}$	-	0.039	0.055	Ω	
	- (-)	V _{GS} = 1.8 V, I _D = 0.5 A	-	0.047	0.075		
Forward Transconductance ^a	9 _{fs}	$V_{DS} = 6 V, I_D = 1 A$	-	16	-	S	
Dynamic ^b							
Total Gate Charge	0	$V_{DS} = 6 V, V_{GS} = 8 V, I_D = 1 A$	-	11	17		
Total Gate Charge	Qg		-	6.5	10	nC	
Gate-Source Charge	Q _{gs}	$V_{DS} = 6 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 1 \text{ A}$	-	0.9	-		
Gate-Drain Charge	Q _{gd}	-		1.6	-		
Gate Resistance	R _g	f = 1 MHz	-	6	-	Ω	
Turn-On Delay Time	t _{d(on)}		-	10	20		
Rise Time	t _r	$V_{DD} = 6 V, R_L = 6 \Omega$	-	20	40		
Turn-Off Delay Time	t _{d(off)}	$I_D \cong 1 \text{ A}, V_{GEN} = 4.5 \text{ V}, \text{ R}_g = 1 \Omega$	-	30	60		
Fall Time	t _f		-	12	25	- ns	
Turn-On Delay Time	t _{d(on)}		-	7	15		
Rise Time	t _r	$V_{DD} = 6 V, R_L = 6 \Omega$	-	16	35		
Turn-Off Delay Time	t _{d(off)}	$I_D \cong 1$ A, V_{GEN} = 8 V, R_g = 1 Ω	-	25	50	1	
Fall Time	t _f		-	9	20	1	
Drain-Source Body Diode Characteristic	s						
Continuous Source-Drain Diode Current	I _S	T _A = 25 °C	-	-	0.7	^	
Pulse Diode Forward Current	I _{SM}		-	-	20	A	
Body Diode Voltage	V _{SD}	$I_{\rm S} = 1$ A, $V_{\rm GS} = 0$ V	-	0.8	1.2	V	
Body Diode Reverse Recovery Time	t _{rr}		-	20	40	ns	
Body Diode Reverse Recovery Charge	Q _{rr}		-	5	10	nC	
Body Didde Hotolog Hotolog Hotolog diff Reverse Recovery Fall Time ta		I _F = 1 A, dl/dt = 100 A/μs, T _J = 25 °C	-	5	-		
Reverse Recovery Rise Time	t _b	1	-	15	İ	ns	

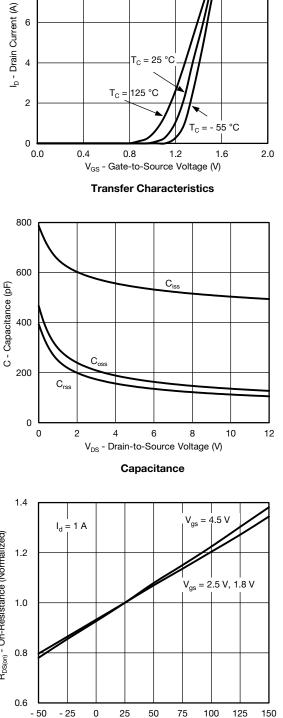
Notes

a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2 %.

b. Guaranteed by design, not subject to production testing.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


2



TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

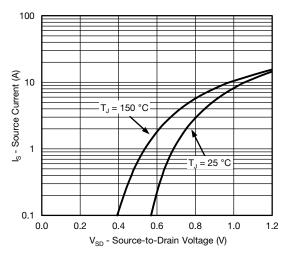
10

8

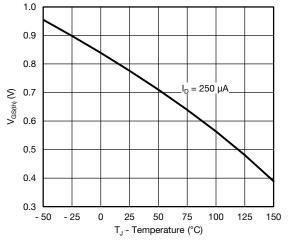
T_J - Junction Temperature (°C)

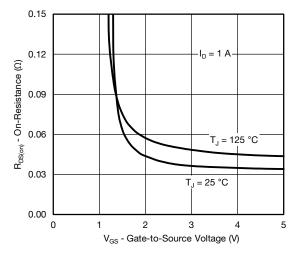
On-Resistance vs. Junction Temperature

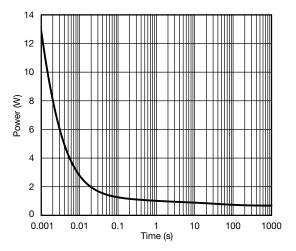
S16-0637-Rev. E, 18-Apr-16

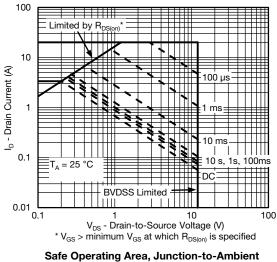

3

Document Number: 62652


For technical questions, contact: <u>pmostechsupport@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

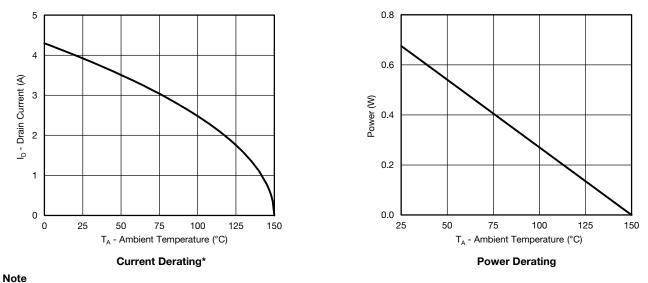

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


Source-Drain Diode Forward Voltage



On-Resistance vs. Gate-to-Source Voltage

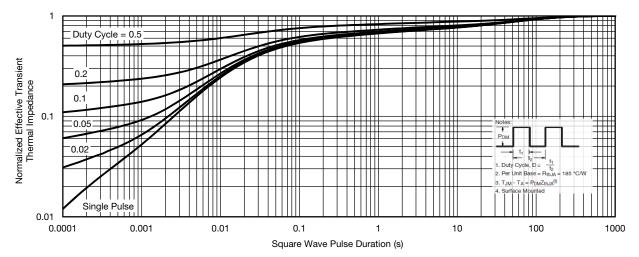
Single Pulse Power (Junction-to-Ambient)



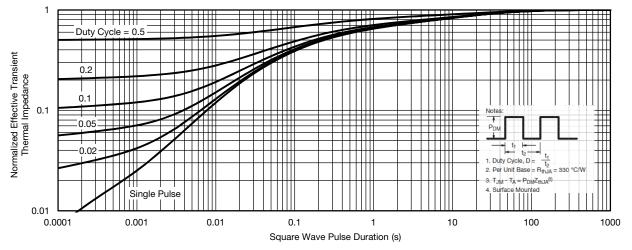
Si8806DB

Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


When mounted on 1" x 1" FR4 with full copper.

* The power dissipation P_D is based on T_J (max.) = 150 °C, using junction-to-ambient thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

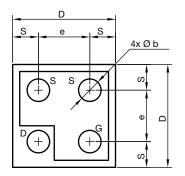


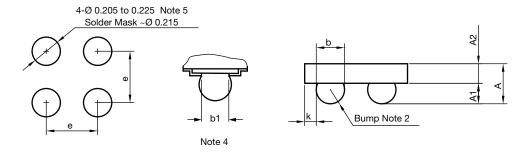
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Normalized Thermal Transient Impedance, Junction-to-Ambient (On 1" x 1" FR4 Board with Maximum Copper)



Normalized Thermal Transient Impedance, Junction-to-Ambient (On 1" x 1" FR4 Board with Minimum Copper)


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?62652.



MICRO FOOT®: 4-Bump (0.8 mm x 0.8 mm, 0.4 mm Pitch)

Notes

⁽¹⁾ Laser mark on the backside surface of die

⁽²⁾ Bumps are 95.5 % Sn,3.8 % Ag,0.7 % Cu

⁽³⁾ "i" is the location of pin 1

⁽⁴⁾ "b1" is the diameter of the solderable substrate surface, defined by an opening in the solder resist layer solder mask defined.

⁽⁵⁾ Non-solder mask defined copper landing pad.

DIM.	MILLIMETERS ^a			INCHES		
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
А	0.328	0.365	0.402	0.0129	0.0144	0.0158
A1	0.136	0.160	0.184	0.0053	0.0062	0.0072
A2	0.192	0.205	0.218	0.0076	0.0081	0.0086
b	0.200	0.220	0.240	0.0078	0.0086	0.0094
b1	0.175			0.0068		
е		0.400		0.0157		
S	0.160	0.180	0.200	0.0062	0.0070	0.0078
D	0.720	0.760	0.800	0.0283	0.0299	0.0314
К	0.040	0.070	0.100	0.0015	0.0027	0.0039

Note

a. Use millimeters as the primary measurement.

ECN: T15-0053-Rev. A, 16-Feb-15 DWG: 6033

Revision: 16-Feb-15

1

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Vishay manufacturer:

Other Similar products are found below :

614233C 648584F IRFD120 JANTX2N5237 2N7000 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C IPS70R2K0CEAKMA1 BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384 NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956 NTE2911 US6M2GTR TK10A80W,S4X(S SSM6P69NU,LF