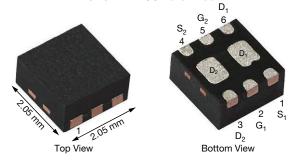


RoHS

COMPLIANT

HALOGEN FREE



www.vishay.com

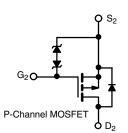
Dual P-Channel 20 V (D-S) MOSFET

PRODUCT SUMMARY									
V _{DS} (V)	R _{DS(on)} (Ω)	I _D (A)	Q _g (TYP.)						
-20	0.057 at V _{GS} = -4.5 V	-4.5 ^a	4.9 nC						
	0.095 at V _{GS} = -2.5 V	-4.5 ^a	4.9110						

PowerPAK® SC-70-6L Dual

Marking Code: DM
Ordering Information:

<u>SiA907EDJT-T1-GE3</u> (Lead (Pb)-free and Halogen-free) <u>SiA907EDJT-T4-GE3</u> (Lead (Pb)-free and Halogen-free)


FEATURES

- TrenchFET® power MOSFET
- Thermally enhanced Thin PowerPAK® SC-70 package
 - Small footprint area
 - Low on-resistance
- Typical ESD protection: 1500 V HBM
- · High speed switching
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- Charger Switch, Load Switch for Portable Devices
- Battery Management

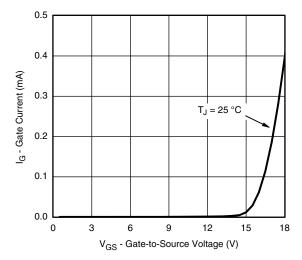
ABSOLUTE MAXIMUM RATINGS (T	_A = 25 °C, unless	otherwise not	ed)		
PARAMETER		SYMBOL	LIMIT	UNIT	
Drain-Source Voltage		V_{DS}	-20	V	
Gate-Source Voltage		V_{GS}	± 12		
	T _C = 25 °C		-4.5 ^a		
Continuous Drain Current /T 150 °C)	T _C = 70 °C	- I _D	-4.5 ^a		
Continuous Drain Current (T _J = 150 °C)	T _A = 25 °C		-4.5 ^{a, b, c}		
	T _A = 70 °C		-3.8 b, c	Α	
Pulsed Drain Current (t = 300 μs)		I _{DM}	-15		
Continuous Source-Drain Diode Current	T _C = 25 °C		-4.5 ^a		
Continuous Source-Drain Diode Current	T _A = 25 °C	l _S	-1.6 ^{b, c}		
	T _C = 25 °C		7.8		
Marrian na Darran Disain ation	T _C = 70 °C		5]	
Maximum Power Dissipation	T _A = 25 °C	- P _D	1.9 ^{b, c}	W	
	T _A = 70 °C]	1.2 b, c		
Operating Junction and Storage Temperature Rar	nge	T _J , T _{stg}	-55 to 150	°C	
Soldering Recommendations (Peak Temperature)	d, e		260		

THERMAL RESISTANCE RATINGS									
PARAMETER		SYMBOL	TYPICAL	MAXIMUM	UNIT				
Maximum Junction-to-Ambient b, f	t ≤ 5 s	R _{thJA}	52	65	°C/W				
Maximum Junction-to-Case (Drain)	Steady State	R_{thJC}	12.5	16	C/VV				

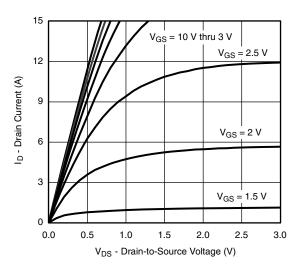
Notes

- a. Package limited.
- b. Surface mounted on 1" x 1" FR4 board.
- c. t = 5 s.
- d. See solder profile (www.vishay.com/doc?73257). The Thin PowerPAK SC-70 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.
- e. Rework conditions: Manual soldering with a soldering iron is not recommended for leadless components.
- f. Maximum under steady state conditions is 110 °C/W.

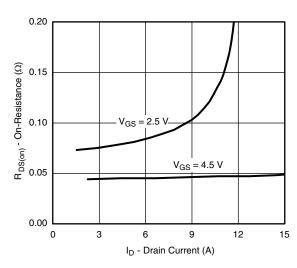
Vishay Siliconix

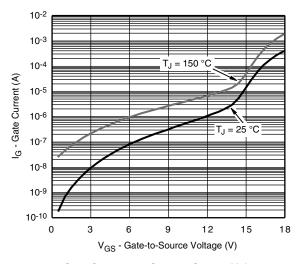

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Static	•					
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$	-20	-	-	V
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	I _D = -250 μA	-	-14	-	mV/°C
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	1 _D = -250 μΑ	-	2.5	-	
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = -250 \mu A$	-0.5	-	-1.4	V
Gate-Source Leakage	lana	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 4.5 \text{ V}$	-	-	± 0.5	μΑ
Gate-Source Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 12 \text{ V}$	-	-	± 10	
Zoro Coto Voltago Drain Current	lana	$V_{DS} = -20 \text{ V}, V_{GS} = 0 \text{ V}$	-	-	-1	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = -20 V, V _{GS} = 0 V, T _J = 55 °C	-	-	-10	
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \le -5 \text{ V}, V_{GS} = -4.5 \text{ V}$	-15	-	-	Α
Drain Course On State Begints 2	D- a	$V_{GS} = -4.5 \text{ V}, I_D = -3.6 \text{ A}$	-	0.047	0.057	Ω
Drain-Source On-State Resistance ^a	R _{DS(on)}	V _{GS} = -2.5 V, I _D = -1.5 A	-	0.075	0.095	
Forward Transconductance ^a	g _{fs}	V _{DS} = -10 V, I _D = -3.6 A	-	11	-	S
Dynamic ^b						
Total Cata Charge	Qg	$V_{DS} = -10 \text{ V}, V_{GS} = -10 \text{ V}, I_D = -4.7 \text{ A}$	-	15	23	nC
Total Gate Charge			-	7.1	11	
Gate-Source Charge	Q_{gs}	$V_{DS} = -10 \text{ V}, V_{GS} = -4.5 \text{ V}, I_{D} = -4.7 \text{ A}$	-	1.3	-	
Gate-Drain Charge	Q_{gd}		-	2.1	-	
Gate Resistance	R_g	f = 1 MHz	1.4	7	14	Ω
Turn-On Delay Time	t _{d(on)}		-	13	25	
Rise Time	t _r	V_{DD} = -10 V, R_L = 2.7 Ω	-	15	30	
Turn-Off Delay Time	t _{d(off)}	$I_D \cong -3.7 \text{ A}, V_{GEN} = -4.5 \text{ V}, R_g = 1 \Omega$	-	30	60	
Fall Time	t _f		-	10	15	
Turn-On Delay Time	t _{d(on)}		-	5	10	ns
Rise Time	t _r	V_{DD} = -10 V, R_L = 2.7 Ω	-	10	20	
Turn-Off Delay Time	t _{d(off)}	$I_D \cong -3.7 \text{ A}, V_{GEN} = -10 \text{ V}, R_g = 1 \Omega$	-	30	60	
Fall Time			-	10	20	
Drain-Source Body Diode Characterist	ics	T _C = 25 °C				
Continuous Source-Drain Diode Current	ntinuous Source-Drain Diode Current I _S		-	-	-4.5	Α
Pulse Diode Forward Current	I _{SM}			-	-15	^
Body Diode Voltage	V _{SD}	I _S = -3.7 A, V _{GS} = 0 V	-	-0.9	-1.2	V
Body Diode Reverse Recovery Time	t _{rr}		-	15	30	ns
Body Diode Reverse Recovery Charge	Q _{rr}	I _F = -3.7 A, dl/dt = 100 A/μs, T _J = 25 °C	-	6	12	nC
Reverse Recovery Fall Time	t _a	$_{1}^{1}$ $_{1}$ $_{2}$ $_{3}$ $_{1}$ $_{3}$ $_{4}$ $_{5}$ $_{1}$ $_{5}$ $_{1}$ $_{5}$ $_{6}$ $_{7}$ $_{1}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{7}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{7}$ $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{7$	-	8.5	-	ns
Reverse Recovery Rise Time	t _b	1	-	6.5	-	

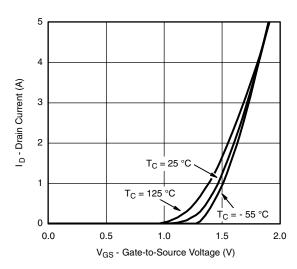
Notes

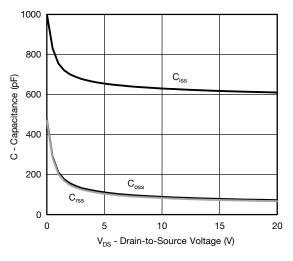

- a. Pulse test; pulse width $\leq 300~\mu s,~duty~cycle \leq 2~\%.$
- b. Guaranteed by design, not subject to production testing.

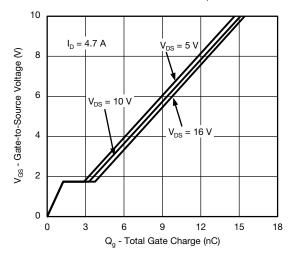
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

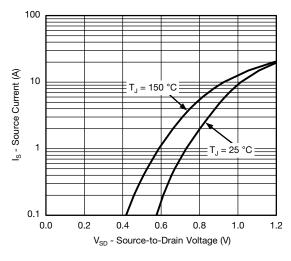


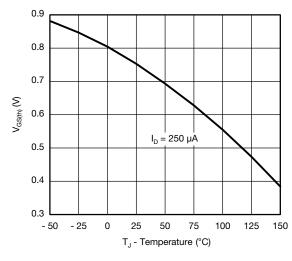

Gate Current vs. Gate-to-Source Voltage

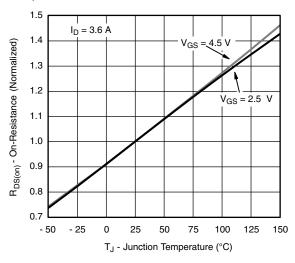

Output Characteristics

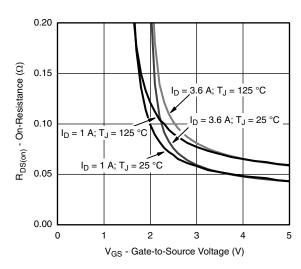

On-Resistance vs. Drain Current and Gate Voltage

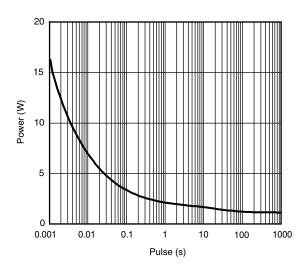

Gate Current vs. Gate-to-Source Voltage


Transfer Characteristics

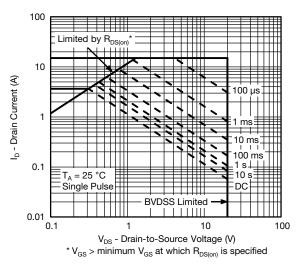



Gate Charge

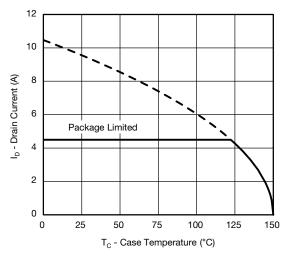

Source-Drain Diode Forward Voltage

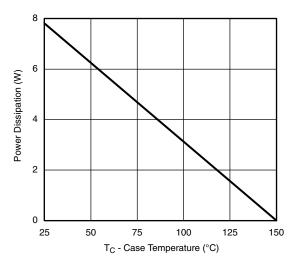

Threshold Voltage

On-Resistance vs. Junction Temperature

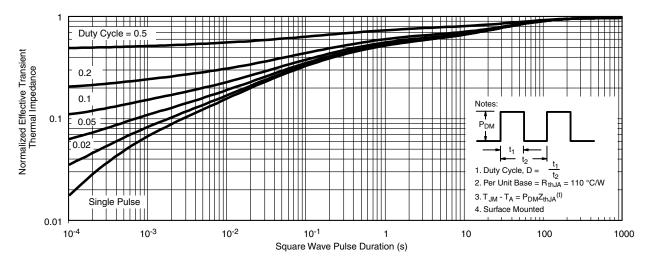


On-Resistance vs. Gate-to-Source Voltage

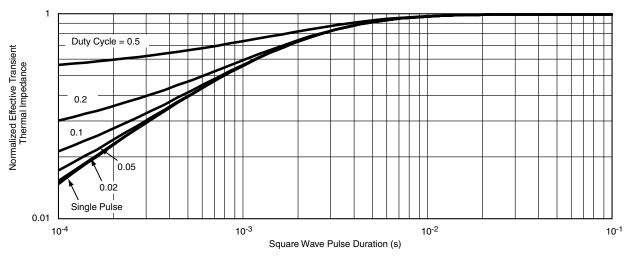



Single Pulse Power, Junction-to-Ambient

Safe Operating Area, Junction-to-Ambient

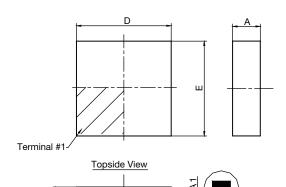

Current Derating*

Power Derating


ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

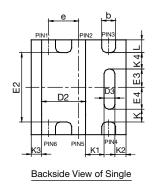
^{*} The power dissipation P_D is based on T_J (max.) = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

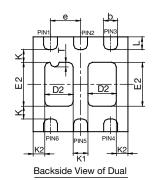
Normalized Thermal Transient Impedance, Junction-to-Ambient



Normalized Thermal Transient Impedance, Junction-to-Case

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?67874.





Side View

Detail Z

			SING	E PAD		DUAL PAD						
DIM.	MILLIMETERS			INCHES			MILLIMETERS			INCHES		
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
Α	0.525	0.60	0.65	0.0206	0.024	0.026	0.525	0.60	0.65	0.0206	0.024	0.026
A1	0	-	0.05	0	-	0.002	0	-	0.05	0	-	0.002
b	0.23	0.30	0.38	0.009	0.012	0.015	0.23	0.30	0.38	0.009	0.012	0.015
С	0.15	0.20	0.25	0.006	0.008	0.010	0.15	0.20	0.25	0.006	0.008	0.010
D	1.98	2.05	2.15	0.078	0.081	0.085	1.98	2.05	2.15	0.078	0.081	0.085
D2	0.85	0.95	1.05	0.033	0.037	0.041	0.513	0.613	0.713	0.020	0.024	0.028
D3	0.135	0.235	0.335	0.005	0.009	0.013						
Е	1.98	2.05	2.15	0.078	0.081	0.085	1.98	2.05	2.15	0.078	0.081	0.085
E2	1.40	1.50	1.60	0.055	0.059	0.063	0.85	0.95	1.05	0.033	0.037	0.041
E3	0.345	0.395	0.445	0.014	0.016	0.018						
E4	0.425	0.475	0.525	0.017	0.019	0.021						i
е		0.65 BSC			0.026 BSC		0.65 BSC 0.026 BSC					
K		0.275 TYP.			0.011 TYP.	•	0.275 TYP.			0.011 TYP.		
K1		0.400 TYP.			0.016 TYP.	•	0.320 TYP.			0.013 TYP.		
K2		0.240 TYP. 0.009 TYP.			0.252 TYP. 0.010 TYP.							
K3		0.225 TYP.		0.009 TYP.								
K4		0.355 TYP. 0.014 TYP.										
L	0.175	0.275	0.375	0.007	0.011	0.015	0.175	0.275	0.375	0.007	0.011	0.015
T							0.05	0.10	0.15	0.002	0.004	0.006
ECN: C12-0160-Rev. B, 05-Mar-12 DWG: 5994												

Case Outline for PowerPAK® SC70T

Notes

- 1. All dimensions are in millimeter. Millimeters will govern.
- 2. Package outline exculsive of mold flash and metal burr.
- 3. Package outline inclusive of plating

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Vishay manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 2N7000 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D

TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C

IPS70R2K0CEAKMA1 BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI

DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384

NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956

NTE2911 US6M2GTR TK10A80W,S4X(S SSM6P69NU,LF