0.9 V to 2.5 V, $55 \mathrm{~m} \Omega$ Load Switch in WCSP4

DESCRIPTION

SiP32451, SiP32452, and SiP32453 are n-channel integrated high side load switches that operate from 0.9 V to 2.5 V input voltage range.

SiP32451, SiP32452, and SiP32453 have low input logic control threshold that can interface with low voltage control GPIO directly without extra level shift or driver. There is a pull down at this EN logic control pin.
Turn on time is fast, less than 25μ s typically for input voltage of 1.2 V or higher. SiP32451 and SiP32452 have fast turn off delay time of less than $1 \mu s$ while SiP32453 features a guaranteed turn off delay of greater than $30 \mu \mathrm{~s}$, typically $90 \mu \mathrm{~s}$.
SiP32451 features an output discharge for fast turn off. SiP32451, SiP32452, and SiP32453 are available in compact wafer level CSP package, WCSP4 $0.8 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ with 0.4 mm pitch.

FEATURES

- Low input voltage, 0.9 V to 2.5 V
- Low $\mathrm{R}_{\mathrm{ON}}, 55 \mathrm{~m} \Omega$ typical
- Fast turn on time
- Low logic control with hysteresis COMPLIANT
- Reverse current blocking when disabled halogen FREE
- Integrated pull down at EN pin
- Output discharge (SiP32451)
- 4 bump WCSP $0.8 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ with 0.4 mm pitch package
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- Battery operated devices
- Smart phones
- GPS and PMP
- Computer
- Medical and healthcare equipment
- Industrial and instrument
- Cellular phones and portable media players
- Game console

TYPICAL APPLICATION CIRCUIT

Fig. 1-SiP32451, SiP32452, and SiP32453 Typical Application Circuit

ORDERING INFORMATION			
TEMPERATURE RANGE	PACKAGE	MARKING	PART NUMBER
	WCSP4: 4 bumps	AA	SiP32451DB-T2-GE1
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$(2 \times 2,0.4 \mathrm{~mm}$ pitch,	AB	SiP32452DB-T2-GE1
	$208 \mu \mathrm{~m}$ bump height,	AC	SiP32453DB-T2-GE1

Note

- GE1 denotes halogen-free and RoHS-compliant

ABSOLUTE MAXIMUM RATINGS		
PARAMETER	LIMIT	UNIT
Supply input voltage (V_{11})	-0.3 to +2.75	V
Enable input voltage ($\mathrm{V}_{\text {EN }}$)	-0.3 to +2.75	
Output voltage (VOUT)	-0.3 to +2.75	
Maximum continuous switch current ($I_{\text {max }}$.)	1.2	A
Maximum pulsed current (l_{DM}) $\mathrm{V}_{\text {IN }}$ (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle)	2	
ESD rating (HBM)	4000	V
Junction temperature (T_{J})	-40 to +150	${ }^{\circ} \mathrm{C}$
Thermal resistance (θ_{JA}) ${ }^{\text {a }}$	280	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Power dissipation ($\left.\mathrm{P}_{\mathrm{D}}\right)^{\text {a }}$	196	mW

Notes

a. Device mounted with all leads and power pad soldered or welded to PC board
b. Derate $3.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating/conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING RANGE				LIMIT	UNIT
PARAMETER	0.9 to 2.5	V			
Input voltage range $\left(\mathrm{V}_{\text {IN }}\right)$	-40 to +125	${ }^{\circ} \mathrm{C}$			
Operating junction temperature range					

SPECIFICATIONS							
PARAMETER	SYMBOL	TEST CONDITIONS UNLESS SPECIFIED $\mathrm{V}_{\text {IN }}=1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)		LIMITS			UNIT
				MIN. ${ }^{\text {a }}$	TYP. ${ }^{\text {b }}$	MAX. ${ }^{\text {a }}$	
Output turn-on delay time	$\mathrm{t}_{\mathrm{d}(\mathrm{on})}$	$\mathrm{V}_{\mathrm{IN}}=1.2 \mathrm{~V}$	$\begin{gathered} \mathrm{R}_{\mathrm{LOAD}}=10 \Omega, \\ \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$	-	0.4	1	$\mu \mathrm{s}$
		$\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}$		-	0.05	1	
Output turn-on rise time	tr_{r}	$\mathrm{V}_{\mathrm{IN}}=1.2 \mathrm{~V}$		10	20	30	
		$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$		5	9.8	20	
Output turn-off delay time	$\mathrm{t}_{\text {d(off) }}$	$\begin{gathered} \text { SiP32451, SiP32452 } \\ \mathrm{V}_{\text {IN }}=1.2 \mathrm{~V} \end{gathered}$		-	0.25	1	
		$\begin{gathered} \text { SiP32451, SiP32452 } \\ \mathrm{V}_{\text {IN }}=2.5 \mathrm{~V} \end{gathered}$		-	0.15	1	
		SiP32453, $\mathrm{V}_{\mathrm{IN}}=1.2 \mathrm{~V}$		30	98	150	
		SiP32453, $\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}$		30	86	150	

Notes

a. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum
b. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing
c. For V_{IN} outside this range consult typical EN threshold curve

PIN CONFIGURATION

Fig. 2 - WCSP4 2×2 Package

PIN DESCRIPTION		
PIN NUMBER	NAME	
A1	IN	This pin is the n-channel MOSFET drain connection. Bypass to ground through a $4.7 \mu \mathrm{~F}$ capacitor
A2	OUT	This pin is the n -channel MOSFET source connection. Bypass to ground through a $0.1 \mu \mathrm{~F}$ capacitor
B1	EN	Enable input
B2	GND	Ground connection

TYPICAL CHARACTERISTICS (internally regulated, $25^{\circ} \mathrm{C}$, unless otherwise noted)

Fig. 3-Quiescent Current vs. Input Voltage

Fig. 4 - Off Supply Current vs. Input Voltage

Fig. 5-Quiescent Current vs. Temperature

Fig. 6 - Off Supply Current vs. Temperature

Fig. 7 - Off Supply Current vs. Input Voltage

Fig. 8 - Off Switch Current vs. Input Voltage

TYPICAL CHARACTERISTICS (internally regulated, $25^{\circ} \mathrm{C}$, unless otherwise noted)

Fig. $9-\mathrm{R}_{\mathrm{DS}(o n)}$ vs. V_{IN}

Fig. 10 - Off Supply Current vs. Temperature

Fig. 11 - Off Switch Current vs. Temperature

Fig. 12 - $\mathrm{R}_{\mathrm{DS}(o n)}$ vs. Temperature

Fig. $13-I_{\text {EN }}$ vs. $V_{\text {EN }}$

Fig. 14 - Reverse Blocking Current vs. Temperature

TYPICAL CHARACTERISTICS (internally regulated, $25^{\circ} \mathrm{C}$, unless otherwise noted)

Fig. 15-Output Pull-down Resistance vs. Input Voltage

Fig. 16 - Reverse Blocking Current vs. Output Voltage

Fig. 17 - EN Threshold Voltage vs. Input Voltage

Fig. 18 - Output Pull-down Resistance vs. Temperature

Fig. 19 - Turn-On Delay Time vs. Temperature

Fig. 20 - Turn-Off Delay Time vs. Temperature

TYPICAL CHARACTERISTICS (internally regulated, $25^{\circ} \mathrm{C}$, unless otherwise noted)

Fig. 21 - Rise Time vs. Temperature

TYPICAL WAVEFORMS

Fig. 23 - Turn-On Time ($\mathbf{V}_{\mathrm{IN}}=1.2 \mathrm{~V}$)

Fig. 24 - SiP32451 and SiP32452 Turn-Off Time ($\mathbf{V}_{\mathrm{IN}}=1.2 \mathrm{~V}$)

Fig. 22 - Turn-Off Delay Time vs. Temperature

Fig. 25 - SiP32453 Turn-Off Time ($\mathrm{V}_{\mathrm{IN}}=1.2 \mathrm{~V}$)

Fig. 26 - Turn-On Time ($\left.\mathbf{V}_{\mathrm{IN}}=2.5 \mathrm{~V}\right)$

Fig. 27 - SiP32451 and SiP32452 Turn-Off Time ($\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}$)

Fig. 28 - SiP32453 Turn-Off Time ($\mathbf{V}_{\mathrm{IN}}=\mathbf{2 . 5} \mathrm{V}$)

BLOCK DIAGRAM

Fig. 29 - Functional Block Diagram

DETAILED DESCRIPTION

SiP32451, SiP32452, and SiP32453 are n-channel power MOSFET designed as high side load switch. Once enable the device charge pumps the gate of the power MOSFET to a constant gate to source voltage for fast turn on time. The mostly constant gate to source voltage keeps the on resistance low through out the input voltage range. When disable, the SiP32451 and SiP32452 pull the gate of the output n-channel low right away for a fast turn off delay while there is a build-in turn off delay for the SiP 32453 . The SiP32451 especially features a output discharge circuit to help discharge the output capacitor. The turn off delay for the SiP32453 is guaranteed to be at least $30 \mu \mathrm{~s}$. Because the body of the output n-channel is always connected to GND, it prevents the current from going back to the input in case the output voltage is higher than the output.

APPLICATION INFORMATION

Input Capacitor

While a bypass capacitor on the input is not required, a $4.7 \mu \mathrm{~F}$ or larger capacitor for C_{IN} is recommended in almost all applications. The bypass capacitor should be placed as physically close as possible to the input pin to be effective in minimizing transients on the input. Ceramic capacitors are recommended over tantalum because of
their ability to withstand input current surges from low impedance sources such as batteries in portable devices.

Output Capacitor

A $0.1 \mu \mathrm{~F}$ capacitor across $\mathrm{V}_{\text {OUT }}$ and GND is recommended to insure proper slew operation. There is inrush current through the output MOSFET and the magnitude of the inrush current depends on the output capacitor, the bigger the $\mathrm{C}_{\text {OUT }}$ the higher the inrush current. There are no ESR or capacitor type requirement.

Enable

The EN pin is compatible with CMOS logic voltage levels. It requires at least 0.1 V or below to fully shut down the device and 1.5 V or above to fully turn on the device.

Protection Against Reverse Voltage Condition

SiP32451, SiP32452, and SiP32453 can block the output current from going to the input in case where the output voltage is higher than the input voltage when the main switch is off.

Thermal Considerations

These devices are designed to maintain a constant output load current. Due to physical limitations of the layout and assembly of the device the maximum switch current is 1.2 A as stated in the Absolute Maximum Ratings table. However,
another limiting characteristic for the safe operating load current is the thermal power dissipation of the package. To obtain the highest power dissipation (and a thermal resistance of $280^{\circ} \mathrm{C} / \mathrm{W}$) the device should be connected to a heat sink on the printed circuit board.
The maximum power dissipation in any application is dependent on the maximum junction temperature, T_{J} (max.) $=125{ }^{\circ} \mathrm{C}$, the junction-to-ambient thermal resistance, $\theta_{\mathrm{J}-\mathrm{A}}=280^{\circ} \mathrm{C} / \mathrm{W}$, and the ambient temperature, T_{A}, which may be formulaically expressed as:
$P($ max. $)=\frac{T_{J(\text { max. })}-T_{A}}{\theta_{J A}}=\frac{125-T_{A}}{280}$
It then follows that, assuming an ambient temperature of $70^{\circ} \mathrm{C}$, the maximum power dissipation will be limited to about 196 mW .
So long as the load current is below the 1.2 A limit, the maximum continuous switch current becomes a function two things: the package power dissipation and the $\mathrm{R}_{\mathrm{DS}(\text { (on })}$ at the ambient temperature.
As an example let us calculate the worst case maximum load current at $T_{A}=70^{\circ} \mathrm{C}$. The worst case $R_{D S(\text { (on) }}$ at $25^{\circ} \mathrm{C}$ is
$65 \mathrm{~m} \Omega$. The $R_{\mathrm{DS}(\text { on })}$ at $70^{\circ} \mathrm{C}$ can be extrapolated from this data using the following formula:
$R_{D S(\text { on) }}$ (at $\left.70^{\circ} \mathrm{C}\right)=R_{\mathrm{DS} \text { (on) }}$ (at $\left.25^{\circ} \mathrm{C}\right) \times\left(1+\mathrm{T}_{\mathrm{C}} \times \Delta \mathrm{T}\right)$
Where T_{C} is $3900 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Continuing with the calculation we have
$\mathrm{R}_{\mathrm{DS}(\text { on })}\left(\right.$ at $\left.70^{\circ} \mathrm{C}\right)=65 \mathrm{~m} \Omega \times\left(1+0.0039 \times\left(70^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right)\right)$ $=76.4 \mathrm{~m} \Omega$
The maximum current limit is then determined by
$\mathrm{I}_{\mathrm{LOAD}(\text { max. })}<\sqrt{\frac{\mathrm{P} \text { (max.) }}{\mathrm{R}_{\mathrm{DS} \text { (on) }}}}$
which in this case is 1.6 A . Under the stated input voltage condition, if the 1.6 A current limit is exceeded the internal die temperature will rise and eventually, possibly damage the device.
To avoid possible permanent damage to the device and keep a reasonable design margin, it is recommended to operate the device maximum up to 1.2 A only as listed in the Absolute Maximum Ratings table.

SiP32451, SiP32452, SiP32453

PRODUCT SUMMARY			
Part number	$\begin{array}{c}0.9 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, 55 \mathrm{~m} \Omega, \\ \text { bidirectional off isolation, } \\ \text { fast turn on / off, output } \\ \text { discharge }\end{array}$	$\begin{array}{c}0.9 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, 55 \mathrm{~m} \Omega, \\ \text { bidirectional off isolation, } \\ \text { fast turn on / off }\end{array}$	$\begin{array}{c}0.9 \mathrm{~V} \mathrm{to} 2.5 \mathrm{~V}, 55 \mathrm{~m} \Omega, \\ \text { bidirectional off isolation, } \\ \text { fast turn on and } 98 \\ \text { off delay }\end{array}$
Sescription turn			

[^0]
WCSP4: 4 Bumps

($2 \times 2,0.4 \mathrm{~mm}$ pitch, $208 \mu \mathrm{~m}$ bump height, $0.8 \mathrm{~mm} \times 0.8 \mathrm{~mm}$ die size)

Mark on backside of die

DWG-No: 6004

Notes

${ }^{(1)}$ Laser mark on the backside surface of die
(2) Bumps are SAC396
(3) 0.05 max. coplanarity

DIM.	MILLIMETERS ${ }^{\text {a }}$			INCHES		
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
A	0.515	0.530	0.545	0.0203	0.0209	0.0215
A1	0.208			0.0082		
b	0.250	0.260	0.270	0.0098	0.0102	0.0106
e	0.400			0.0157		
D	0.720	0.760	0.800	0.0283	0.0299	0.0315

Note
a. Use millimeters as the primary measurement

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by Vishay manufacturer:

Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL$\underline{1.8 E V / N O P B}$ LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ

[^0]: Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?63315

