$46 \mathrm{~m} \Omega$, Slew Rate Controlled Load Switch in uDFN4 $1.1 \mathrm{~mm} \times 1.1 \mathrm{~mm}$

DESCRIPTION

The SiP32472 is a slew rate controlled integrated high side load switch that operates in the input voltage range from 1.2 V to 5.5 V .

This design features slew rate control, reverse blocking, output discharge, and control logic pull down. The device is logic high enabled.
The SiP32472 is available in uDFN4 $1.1 \mathrm{~mm} \times 1.1 \mathrm{~mm}$ package.

FEATURES

- Low input voltage, 1.2 V to 5.5 V
- Low $R_{\text {on }}, 46 \mathrm{~m} \Omega / t y p$. at 5 V
- Slew rate control
- Low logic control
- Reverse current blocking when disabled

RoHS
COMPLANT halogen FREE Available

- Integrated output discharge switch
- Integrated pull down resistor at "EN"
- uDFN4 $1.1 \mathrm{~mm} \times 1.1 \mathrm{~mm}$ package
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- Smart phones
- GPS and portable media players
- Tablet computer
- Medical and healthcare equipment
- Industrial and instrument
- Game console

DEVICE OPTIONS							
PART NUMBER	$\mathbf{R}_{\mathbf{o n}}$ $(\mathrm{m} \Omega)$	$\mathbf{t}_{\mathbf{o n}}$ $(\mu \mathbf{s})$	$\mathbf{t}_{\mathrm{d}(\mathrm{fff})}$	REVERSE BLOCKING	R $_{\text {DISCHARGE }}$	EN $_{\text {LOGIC }}$	EN/PULL DOWN RESISTOR (Ω)
SiP32472DN-T1-GE3	46	200	2	Y	Y	High enable	2 M

TYPICAL APPLICATION CIRCUIT

Fig. 1 - Typical Application Circuit

SiP32472

ABSOLUTE MAXIMUM RATINGS			
PARAMETER	CONDITIONS	LIMIT	UNIT
Supply Input Voltage $\mathrm{V}_{\text {IN }}$	Reference to GND	-0.3 to 6.5	V
Output Voltage $\mathrm{V}_{\text {OUT }}$	Reference to GND	-0.3 to 6.5	
Output Voltage $\mathrm{V}_{\text {OUT }}$	Pulse at 1 ms reference to GND ${ }^{(1)}$	-1.6	
Enable Input Voltage EN	Reference to GND	-0.3 to 6.5	
Maximum Continuous Switch Current		1.2	A
Maximum Pulse Switch Current	Pulse at $1 \mathrm{~ms}, 10 \%$ duty cycle	2	
ESD Rating (HBM)		4000	V
Thermal Resistance		280	${ }^{\circ} \mathrm{C} / \mathrm{W}$
TEMPERATURE			
Operating Temperature		-40 to 85	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature		125	
Storage Temperature		-65 to 150	

Note

${ }^{(1)}$ Negative current injection up to 300 mA

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING RANGE					
ELECTRICAL PARAMETER	MINIMUM	TYPICAL	MAXIMUM	UNIT	
Input Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$	1.2	-	5.5	V	

SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CONDITION UNLESS SPECIFIED $\mathrm{V}_{\text {IN }}=1.2 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (Typical values are at $25^{\circ} \mathrm{C}$)	LIMITS			UNIT
			MIN.	TYP.	MAX.	
POWER SUPPLY						
Quiescent Current	I_{Q}	$\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}$, $\mathrm{l}_{\text {Out }}=0 \mathrm{~mA}$	-	4.5	7	$\mu \mathrm{A}$
Shutdown Current	$\mathrm{I}_{\text {SD }}$	OUT = GND	-	0.01	2	
Off Switch Current	$\mathrm{l}_{\mathrm{DS} \text { (off) }}$	EN = GND, OUT = GND	-	0.01	2	
Reverse Blocking Current	$l_{\text {(in)RB }}$	Out $=5 \mathrm{~V}, \mathrm{IN}=1.2 \mathrm{~V}, \mathrm{EN}=0 \mathrm{~V}$, (Measured at IN pin)	-	0.01	1	
		Out $=5 \mathrm{~V}, \mathrm{IN}=0 \mathrm{~V}, \mathrm{EN}=0 \mathrm{~V}$, (Measured at IN pin)	-	0.01	1	
SWITCH RESISTANCE						
On Resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\mathrm{l}_{\text {OUT }}=500 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	86	130	$\mathrm{m} \Omega$
		$\mathrm{I}_{\text {OUT }}=500 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=1.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	72	100	
		$\mathrm{l}_{\text {OUT }}=500 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	62	90	
		Iout $=500 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	48	60	
		$\mathrm{l}_{\text {OUT }}=500 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	46	60	
Discharge Switch On Resistance	$\mathrm{R}_{\text {PD }}$	When $\mathrm{V}_{\mathbb{I N}}=3 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$	-	80	-	Ω
		When $\mathrm{V}_{\text {IN }}=1.8 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$	-	<200	-	
EN Pin Pull Down Resistor	R_{EN}	$\mathrm{EN}=1.2 \mathrm{~V}$	1	2.6	5	$\mathrm{M} \Omega$
On Resistance Temperature Coefficient	TC RDS		-	2800		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
ON/OFF LOGIC						
EN Input Low Voltage	V_{IL}	$\mathrm{V}_{\mathrm{IN}}=1.5 \mathrm{~V}$	0.4	-	-	V
EN Input High Voltage	V_{IH}	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$	-	-	1	

Vishay Siliconix

SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CONDITION UNLESS SPECIFIED $\mathrm{V}_{\text {IN }}=1.2 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (Typical values are at $25^{\circ} \mathrm{C}$)	LIMITS			UNIT
			MIN.	TYP.	MAX.	
SWITCHING SPEED						
Switch Turn-ON Delay Time	ton_DLY	$\begin{gathered} \mathrm{R}_{\text {LOAD }}=500 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F} \\ \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V} \end{gathered}$	-	130	-	
Switch Turn-ON Rise Time	t_{r}	$\begin{gathered} \mathrm{R}_{\text {LOAD }}=500 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F} \\ \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V} \end{gathered}$	-	170	-	$\mu \mathrm{s}$
Switch Turn-OFF Delay Time	$\mathrm{t}_{\text {off }}$	$\begin{gathered} \mathrm{R}_{\text {LOAD }}=500 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \\ \left(50 \% \mathrm{~V}_{\text {IN }} \text { to } 90 \% \mathrm{~V}_{\text {OUT }}\right) \end{gathered}$	-	2	-	

PIN CONFIGURATION

Bottom View

Fig. 2 - uDFN 1.1 mm x 1.1 mm Package

PIN DESCRIPTION (uDFN PACKAGE)		
PIN\#	NAME	FUNCTION
1	EN	Switch on/off control. A pull down resistor is integrated
2	IN	Switch input
3	OUT	Switch output
4	GND	Ground connection

DEVICE MARKING

Row 1	C $+\mathbf{W}$: W = week code
Row 2	Dot	: Dot is Pin 1 locator

SiP32472 = C

TRUTH TABLE	
EN	SWITCH
1	ON
0	OFF

BLOCK DIAGRAM

Fig. 3 - Functional Block Diagram
TYPICAL CHARACTERISTICS (internally regulated, $25^{\circ} \mathrm{C}$, unless otherwise noted)

Fig. 4 - Quiescent Current vs. Input Voltage

Fig. 5 - Off Supply Current vs. Input Voltage

Fig. 6 - Quiescent Current vs. Temperature

Fig. 7 - Off Supply Current vs. Temperature

SiP32472
www.vishay.com
Vishay Siliconix
TYPICAL CHARACTERISTICS (internally regulated, $25^{\circ} \mathrm{C}$, unless otherwise noted)

Fig. 8 - Off Switch Current vs. Input Voltage

Fig. 9 - $\mathrm{R}_{\mathrm{DS}(o n)}$ vs. Input Voltage

Fig. 10 - Reverse Blocking Current vs. Output Voltage

Fig. 11 - Off Switch Current vs. Temperature

Fig. 12 - $\mathrm{R}_{\mathrm{DS}(o n)}$ vs. Temperature

Fig. 13 - Reverse Blocking Current vs. Temperature

TYPICAL CHARACTERISTICS (internally regulated, $25^{\circ} \mathrm{C}$, unless otherwise noted)

Fig. 14 - Turn-On Delay Time vs. Temperature

Fig. 15 - EN Threshold Voltage vs. Input Voltage

Fig. 17 - Output Pulldown Resistance vs. Temperature

Fig. 18 - Turn-Off Delay Time vs. Temperature

Fig. 16 - Rise Time vs. Temperature

TYPICAL WAVEFORMS

Fig. 19 - Turn-On Time

Fig. 20 - Turn-On Time

Fig. 21 - Turn-On Time

TYPICAL WAVEFORMS

Fig. 24 - Turn-Off Time

Fig. 25 - Turn-Off Time

Fig. 27 - Turn-Off Time

Fig. 28 - Turn-Off Time

Fig. 26 - Turn-Off Time

DETAILED DESCRIPTION

SiP32472 has a P-channel power MOSFET designed as a high side load switch. It incorporates a negative charge pump at the gate to keep the gate to source voltage high when turned on therefore keep the on resistance low at lower input voltage range. SiP32472 is designed with slow slew rate to minimize the inrush current during turn on. This device has a reverse blocking circuit to prevent the current from going back to the input in case the output voltage is higher than the input voltage. The SiP32472 has an output pulldown resistor to discharge the output capacitance when the device is off.

APPLICATION INFORMATION

Input Capacitor

While a bypass capacitor on the input is not required, a $4.7 \mu \mathrm{~F}$ or larger capacitor for C_{IN} is recommended in almost all applications. The bypass capacitor should be placed as physically close as possible to the input pin to be effective in minimizing transients on the input. Ceramic capacitors are recommended over tantalum because of their ability to withstand input current surges from low impedance sources such as batteries in portable devices.

Output Capacitor

A $0.1 \mu \mathrm{~F}$ capacitor across $\mathrm{V}_{\text {OUt }}$ and GND is recommended to insure proper slew operation. There is inrush current through the output MOSFET and the magnitude of the inrush current depends on the output capacitor, the bigger the Cout the higher the inrush current. There are no ESR or capacitor type requirement.

Enable

The EN pin is compatible with CMOS logic voltage levels. It requires at least 0.4 V or below to fully shut down the device and 1 V or above to fully turn on the device. There is a $2.8 \mathrm{M} \Omega$ resistor connected between EN pin and GND pin.

Protection Against Reverse Voltage Condition

This device contains a reverse blocking circuit to keep the output current from flowing back to the input in case the output voltage is higher than the input voltage.

Thermal Considerations

This device is designed to maintain a constant output load current. Due to physical limitations of the layout and assembly of the device the maximum switch current is 1.2 A as stated in the Absolute Maximum Ratings table. However, another limiting characteristic for the safe operating load current is the thermal power dissipation of the package. To obtain the highest power dissipation (and a thermal resistance of $280^{\circ} \mathrm{C} / \mathrm{W}$) the device should be connected to a heat sink on the printed circuit board.
The maximum power dissipation in any application is dependant on the maximum junction temperature, $\mathrm{T}_{\mathrm{J}(\text { max. })}=125{ }^{\circ} \mathrm{C}$, the junction-to-ambient thermal resistance, $\theta_{\mathrm{J}-\mathrm{A}}=280^{\circ} \mathrm{C} / \mathrm{W}$, and the ambient temperature, T_{A}, which may be formulaically expressed as:

$$
P(\text { max. })=\frac{T_{J}(\max .)-T_{A}}{\theta_{J-A}}=\frac{125-T_{A}}{280}
$$

It then follows that, assuming an ambient temperature of $70^{\circ} \mathrm{C}$, the maximum power dissipation will be limited to about 196 mW .

So long as the load current is below the 1.2 A limit, the maximum continuous switch current becomes a function two things: the package power dissipation and the $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ at the ambient temperature.
As an example let us calculate the worst case maximum load current at $T_{A}=70^{\circ} \mathrm{C}$. The worst case $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ at $25^{\circ} \mathrm{C}$ is $65 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{IN}}=1.5 \mathrm{~V}$. The $\left.\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}\right)$ at $70{ }^{\circ} \mathrm{C}$ can be extrapolated from this data using the following formula:
$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ (at $70^{\circ} \mathrm{C}$) $=\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ (at $\left.25^{\circ} \mathrm{C}\right) \times\left(1+\mathrm{T}_{\mathrm{C}} \times \Delta \mathrm{T}\right)$
Where T_{C} is $2820 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Continuing with the calculation we have
$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}\left(\right.$ at $\left.70^{\circ} \mathrm{C}\right)=65 \mathrm{~m} \Omega \times\left(1+0.00282 \times\left(70^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right)\right)$ $=73.2 \mathrm{~m} \Omega$
The maximum current limit is then determined by

$$
\mathrm{I}_{\text {LOAD }}(\text { max. })<\sqrt{\frac{\mathrm{P}(\max .)}{\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}}}
$$

which in this case is 1.6 A . Under the stated input voltage condition, if the 1.6 A current limit is exceeded the internal die temperature will rise and eventually, possibly damage the device.
To avoid possible permanent damage to the device and keep a reasonable design margin, it is recommended to operate the device maximum up to 1.2 A only as listed in the Absolute Maximum Ratings table.

PACKAGE OUTLINE

uDFN4L - 1.1 mm x 1.1 mm Case Outline

IDP VIEW

BUTTDM VIEW

SIDE VIEW

DIMENSION	MILLIMETERS ${ }^{(1)}$			INCHES		
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
A	0.50	0.55	0.60	0.020	0.022	0.024
A1	0	-	0.05	0	-	0.002
A3	0.15 REF			0.006 REF		
b	0.18	0.25	0.30	0.007	0.010	0.012
D	1.10 BSC			0.043 BSC		
e	0.65 BSC			0.026 BSC		
E	1.10 BSC			0.043 BSC		
L	0.30	0.40	0.50	0.012	0.016	0.020
θ	0°	-	12°	0°	-	12°
$\mathrm{N}^{(3)}$	4			4		
$\mathrm{Ne}{ }^{(3)}$	2			2		

Notes

${ }^{(1)}$ Use millimeters as the primary measurement.
(2) Dimensioning and tolerances conform to ASME Y14.5M. - 1994.
(3) N is the number of terminals. Ne is the number of terminals in E site.
(4) Dimensions b applies to plated terminal and is measured between 0.15 mm and 0.30 mm from terminal tip.
(5) The pin 1 identifier must be existed on the top surface of the package by using identification mark or other feature of package body.
(6) Package warpage max. 0.05 mm .

[^0]
uDFN4L - 1.1 mm x 1.1 mm Case Outline

Top view

Bottom view

Side view

DIMENSION	MILLIMETERS ${ }^{(1)}$			INCHES		
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
A	0.50	0.55	0.60	0.020	0.022	0.024
A1	0	-	0.05	0	-	0.002
A3	0.15 REF			0.006 REF		
b	0.18	0.25	0.30	0.007	0.010	0.012
D	1.10 BSC			0.043 BSC		
e	0.65 BSC			0.026 BSC		
E	1.10 BSC			0.043 BSC		
L	0.30	0.40	0.50	0.012	0.016	0.020
θ	0°	-	12°	0°	-	12°
$\mathrm{N}^{(3)}$	4			4		
$\mathrm{Ne}{ }^{(3)}$	2			2		

Notes

${ }^{(1)}$ Use millimeters as the primary measurement.
${ }^{(2)}$ Dimensioning and tolerances conform to ASME Y14.5M. - 1994.
${ }^{(3)} \mathrm{N}$ is the number of terminals. Ne is the number of terminals in E site.
(4) Dimensions b applies to plated terminal and is measured between 0.15 mm and 0.30 mm from terminal tip.
${ }^{(5)}$ The pin 1 identifier must be existed on the top surface of the package by using identification mark or other feature of package body.
${ }^{(6)}$ Package warpage max. 0.05 mm .

```
ECN: S13-1370-Rev. A, 24-Jun-13
DWG: }001
```


RECOMMENDED MINIMUM PADS FOR TDFN4 1.2×1.6

Recommended Minimum Pads
Dimensions in mm

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by Vishay manufacturer:
Other Similar products are found below :
TCK111G,LF(S FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 SLG5NT1437VTR SZNCP3712ASNT1G NCV330MUTBG DML1008LDS-7 KTS1670EDA-TR KTS1640QGDV-TR KTS1641QGDV-TR NCV459MNWTBG FPF2260ATMX U6513A MIC2012YM-TR NCP45780IMN24RTWG MAX14919ATP+ MC33882PEP TPS2104DBVR MIC2098-1YMT-TR MIC94062YMT TR MP6231DN-LF MIC2075-2YM MIC94068YML-TR SIP32461DB-T2-GE1 NCP335FCT2G TCK105G,LF(S AP2191DWG-7 AP2151DSG-13 MIC94094YC6-TR MIC94064YC6-TR MIC25051YM MIC94305YMT-TR MIC94085YFT-TR MIC94081YFT-TR MIC94042YFL-TR MIC94041YFL-TR MIC2005-1.2YM6-TR TPS2032QDRQ1 SIP32510DT-T1-GE3 NCP333FCT2G BTS3050TFATMA1 NCP331SNT1G TPS2092DR TPS2063DR TPS2042P

[^0]: Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?62512

