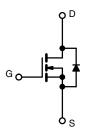


N-Channel 80 V (D-S) MOSFET

PRODUCT SUMMARY					
V _{DS} (V)	80				
$R_{DS(on)}$ max. (Ω) at $V_{GS} = 10 \text{ V}$	0.0027				
$R_{DS(on)}$ max. (Ω) at $V_{GS} = 7.5 \text{ V}$	0.0032				
Q _g typ. (nC)	37.7				
I _D (A)	146				
Configuration	Single				


FEATURES

- TrenchFET® Gen V power MOSFET
- Very low R_{DS} x Q_g figure-of-merit (FOM)
- Tuned for the lowest R_{DS} x Q_{oss} FOM
- 100 % R_a and UIS tested
- Material categorization: for definitions of compliance please see www.vishav.com/doc?99912

APPLICATIONS

- · Synchronous rectification
- · Primary side switch
- DC/DC converters
- · OR-ing and hot swap switch
- Power supplies
- · Motor drive control
- · Battery management

N-Channel MOSFET

ORDERING INFORMATION	
Package	PowerPAK SO-8
Lead (Pb)-free and halogen-free	SiR580DP-T1-RE3
Alternate manufacturing location	SiR580DP-T1-BE3

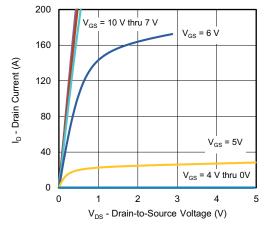
ABSOLUTE MAXIMUM RATING	i5 $(I_A = 25 {}^{\circ}\text{C}, L$	iniess otnerv	rise notea)		
PARAMETER		SYMBOL	LIMIT	UNIT	
Drain-source voltage		V_{DS}	80	V	
Gate-source voltage		V_{GS}	± 20	v	
Continuous drain current (T _J = 150 °C)	T _C = 25 °C		146		
	T _C = 70 °C	1 . [117		
	T _A = 25 °C	d ID	35.8 ^{b, c}		
	T _A = 70 °C	1	28.6 ^{b, c}	A	
Pulsed drain current (t = 100 µs)		I _{DM}	300	A	
Continuous source-drain diode current	T _C = 25 °C		94.5 ^a		
Continuous source-drain diode current	T _A = 25 °C	- I _S	5.6 ^{b, c}		
Single pulse avalanche current	L = 0.1 mH	I _{AS}	50		
Single pulse avalanche energy		E _{AS}	125	mJ	
	T _C = 25 °C		104		
Maximum power dissipation	T _C = 70 °C	T , [66.6	W	
Maximum power dissipation	T _A = 25 °C	$ P_{D}$	6.25 ^{b, c}	VV	
	T _A = 70 °C	7	4 b, c		
Operating junction and storage temperature range		T _J , T _{stg}	-55 to +150	°C	
Soldering recommendations (peak temperature) ^c		Ĭ	260		

THERMAL RESISTANCE RAT	INGS				
PARAMETER	_	SYMBOL	TYPICAL	MAXIMUM	UNIT
Maximum junction-to-ambient ^b	t ≤ 10 s	R _{thJA}	15	20	°C/W
Maximum junction-to-case (drain)	Steady state	$R_{th,IC}$	0.9	1.2	C/VV

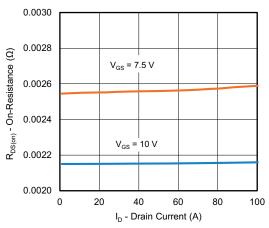
Notes

- a. Package limited
- b. Surface mounted on 1" x 1" FR4 board
- c. t = 10 s
- d. See solder profile (www.vishay.com/doc?73257). The PowerPAK SO-8 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection
- e. Rework conditions: manual soldering with a soldering iron is not recommended for leadless components
- f. Maximum under steady state conditions is 54 °C/W
- g. $T_C = 25$ °C

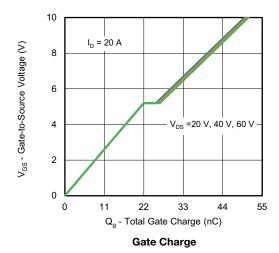
Vishay Siliconix

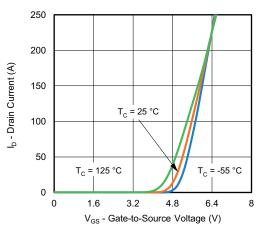

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT	
Static							
Drain-source breakdown voltage	V _{DS}	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	80	-	-	٧	
V _{DS} temperature coefficient	$\Delta V_{DS}/T_{J}$	I _D = 10 mA	-	46	-	m)//00	
V _{GS(th)} temperature coefficient	$\Delta V_{GS(th)}/T_J$	I _D = 250 μA	-	-7.8	-	mV/°C	
Gate-source threshold voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2	-	4	V	
Gate-source leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$	-	-	100	nA	
Zoro gata valtaga drain aurrent	I _{DSS}	V _{DS} = 64 V, V _{GS} = 0 V	-	-	1	, . ^	
Zero gate voltage drain current		$V_{DS} = 64 \text{ V}, V_{GS} = 0 \text{ V}, T_J = 70 ^{\circ}\text{C}$		=.	15	μA	
On-state drain current ^a	I _{D(on)}	$V_{DS} \ge 10 \text{ V}, V_{GS} = 10 \text{ V}$	40	-	-	Α	
Drain-source on-state resistance ^a	В	V _{GS} = 10 V, I _D = 20 A	-	0.00215	0.0027	Ω	
Diani-Source on-State resistance "	R _{DS(on)}	$V_{GS} = 7.5 \text{ V}, I_D = 20 \text{ A}$		0.00255	0.0032	1 32	
Forward transconductance ^a	9 _{fs}	V _{DS} = 15 V, I _D = 20 A		68	-	S	
Dynamic ^b							
Input capacitance	C _{iss}		-	4100	-		
Output capacitance	C _{oss}	$V_{DS} = 40 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	-	1070	-	рF	
Reverse transfer capacitance	C _{rss}		- 12 -		-	1	
Tatal mate above	0	$V_{DS} = 40 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}$	-	50.6	76		
Total gate charge	Qg		-	37.7	57		
Gate-source charge	Q _{gs}	$V_{DS} = 40 \text{ V}, V_{GS} = 7.5 \text{ V}, I_D = 20 \text{ A}$	-	22	-	nC	
Gate-drain charge	Q _{gd}		-	3.9	-		
Output charge	Q _{oss}	V _{DS} = 40 V, V _{GS} = 0 V	-	118	-		
Gate resistance	R_g	f = 1 MHz	0.4	1.1	1.9	Ω	
Turn-on delay time	t _{d(on)}		-	18	36		
Rise time	t _r	$V_{DD} = 40 \text{ V}, R_L = 2 \Omega, I_D \cong 20 \text{ A},$	-	8	16	1	
Turn-off delay time	t _{d(off)}	$V_{GEN} = 10 \text{ V}, R_g = 1 \Omega$	-	28	56	1	
Fall time	t _f		-	8	16	1	
Turn-on delay time	t _{d(on)}		-	23	46	ns	
Rise time	t _r	$V_{DD} = 40 \text{ V}, R_{I} = 2 \Omega, I_{D} \cong 20 \text{ A},$	-	10	20	1	
Turn-off delay time	t _{d(off)}	$V_{GEN} = 7.5 \text{ V}, R_g = 1 \Omega$	-	25	50	1	
Fall time	t _f		-	10	20	1	
Drain-Source Body Diode Characteristi	cs				l		
Continuous source-drain diode current	I _S	T _C = 25 °C	-	-	94.5		
Pulse diode forward current	I _{SM}		-	-	300	A	
Body diode voltage	V _{SD}	$I_{S} = 5 \text{ A}, V_{GS} = 0 \text{ V}$	-	0.76	1.1	V	
Body diode reverse recovery time	t _{rr}	- 	-	56	112	ns	
Body diode reverse recovery charge	Q _{rr}	$I_F = 20 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	-	67	134	nC	
Reverse recovery fall time	t _a	$T_{\rm J} = 25 ^{\circ}{\rm C}$	-	25	-		
,	u			<u> </u>		ns	

Notes

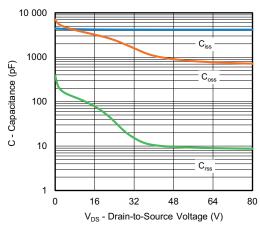

- a. Pulse test; pulse width $\leq 300~\mu s,~duty~cycle \leq 2~\%$
- b. Guaranteed by design, not subject to production testing

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.





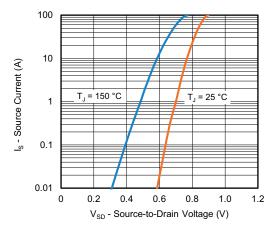
Output Characteristics



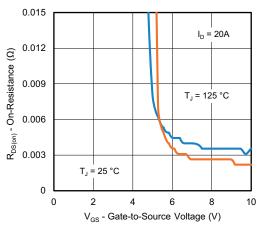
On-Resistance vs. Drain Current and Gate Voltage



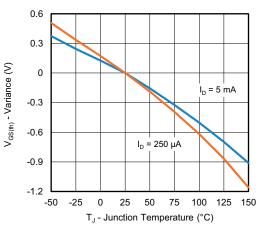
Transfer Characteristics

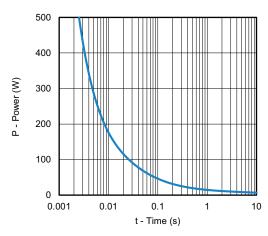


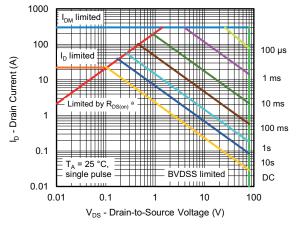
Capacitance



On-Resistance vs. Junction Temperature

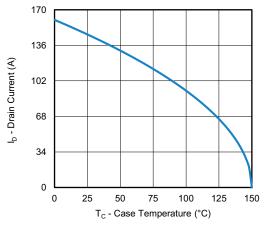



Source-Drain Diode Forward Voltage

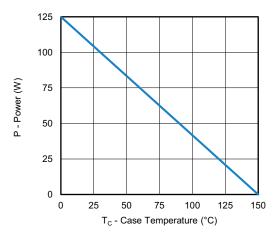

On-Resistance vs. Gate-to-Source Voltage

Threshold Voltage

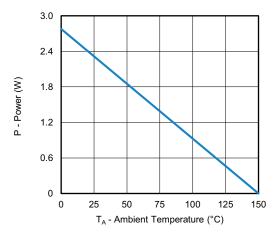
Single Pulse Power, Junction-to-Ambient



Safe Operating Area, Junction-to-Ambient

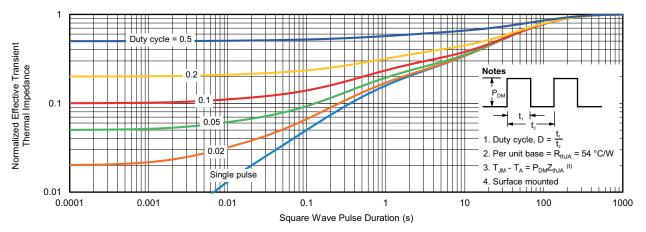

Note

a. V_{GS} > minimum V_{GS} at which $R_{DS(on)}$ is specified

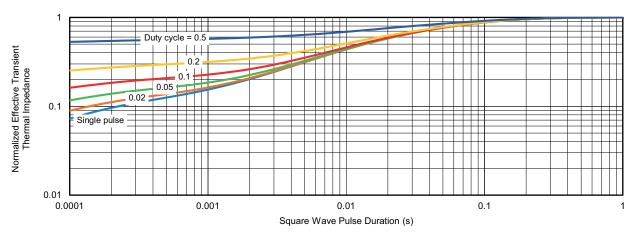


Current Derating a

Power, Junction-to-Case

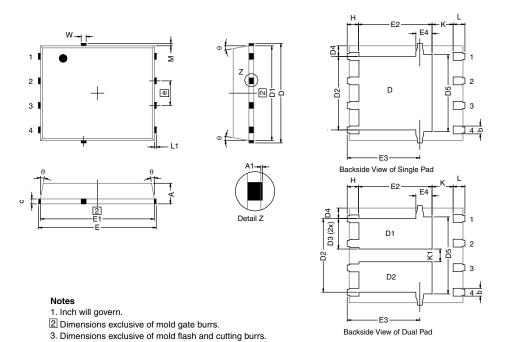


Power, Junction-to-Ambient


Note

a. The power dissipation P_D is based on T_J max. = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit

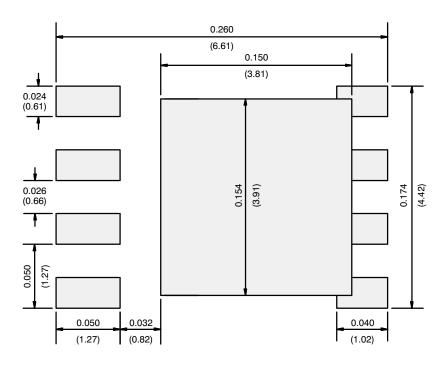
Normalized Thermal Transient Impedance, Junction-to-Ambient


Normalized Thermal Transient Impedance, Junction-to-Case

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and reliability data, see www.vishay.com/ppg?77105.

DWG: 5881

PowerPAK® SO-8, (Single/Dual)



DIM.	MILLIMETERS			INCHES			
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX	
Α	0.97	1.04	1.12	0.038	0.041	0.044	
A1		-	0.05	0	-	0.002	
b	0.33	0.41	0.51	0.013	0.016	0.020	
С	0.23	0.28	0.33	0.009	0.011	0.013	
D	5.05	5.15	5.26	0.199	0.203	0.207	
D1	4.80	4.90	5.00	0.189	0.193	0.197	
D2	3.56	3.76	3.91	0.140	0.148	0.154	
D3	1.32	1.50	1.68	0.052	0.059	0.066	
D4	0.57 typ.			0.0225 typ.			
D5		3.98 typ.			0.157 typ.		
Е	6.05	6.15	6.25	0.238	0.242	0.246	
E1	5.79	5.89	5.99	0.228	0.232	0.236	
E2	3.48	3.66	3.84	0.137	0.144	0.151	
E3	3.68	3.78	3.91	0.145	0.149	0.154	
E4		0.75 typ.		0.030 typ.			
е		1.27 BSC		0.050 BSC			
K		1.27 typ.		0.050 typ.			
K1	0.56	-	-	0.022	-	-	
Н	0.51	0.61	0.71	0.020	0.024	0.028	
L	0.51	0.61	0.71	0.020	0.024	0.028	
L1	0.06	0.13	0.20	0.002	0.005	0.008	
θ	0°	-	12°	0°	-	12°	
W	0.15	0.25	0.36	0.006	0.010	0.014	
М	0.125 typ.			0.005 typ.			

Revison: 13-Feb-17 1 Document Number: 71655

RECOMMENDED MINIMUM PADS FOR PowerPAK® SO-8 Single

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

APPLICATION NOTE

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Vishay manufacturer:

Other Similar products are found below:

VS-30CTQ045-1PBF DG211BDY VLMK23R1S1-GS08 VJ1206V106MXQTW1BC VLMS2100-GS08 LL43-GS08 BAS86-GS08 BAS385TR CRCW040210R0FKTD CRCW040215R0FKEDHP CRCW0603120KFKEA CRCW060333R2FKTA CRCW06034K12FKEA
CRCW0805110KFKEA CRCW12063K30FKEAHP M39006/25-0228 M55342K12B100ERWB M64W103KB40 M64Z501KB40
CW0055R000JE12 CW010330R0JE12HE MAL202117102E3 MAL202118471E3 MAL202190518E3 715C30DKD47
MBA02040C3328FRP00 MBA02040C5109FC100 MBB02070C4700FC100 MCT06030C2709FP500 MDP1603470RGE04 FESB8JT-E3/81
MKT1813410405 MKT1813422014 MMA21-0341K1-101 MMB02070C5609FB200 PE60L0FGW471MA PHP01206E2002BST5
PR02000203608JR500 PR02000209102JR500 RCL040647R0JNEA RCWE1210R360FKEA RCWE1210R560FKEA RE65G5R60C02
RH005220R0FE02 RH010600R0FC02 135D255X9100C6 135D566X9030C6 135D866X0100K2 135D106X0100C2 RL07S910GB14