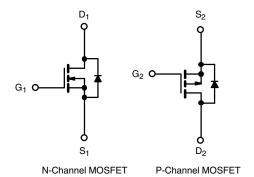
Vishay Siliconix

Automotive N-and P-Channel 30 V (D-S) 175 °C MOSFET

Marking Code: Q4532A

PRODUCT SUMMARY						
	N-CHANNEL	P-CHANNEL				
V _{DS} (V)	30	-30				
$R_{DS(on)}(\Omega)$ at $V_{GS} = \pm 10 \text{ V}$	0.031	0.070				
$R_{DS(on)}(\Omega)$ at $V_{GS} = \pm 4.5 \text{ V}$	0.042	0.190				
I _D (A)	7.3	-5.3				
Configuration	N- and p-pair					


FEATURES

- TrenchFET® power MOSFET
- AEC-Q101 qualified c
- 100 % R_q and UIS tested
- Material categorization: for definitions of compliance please see www.vishav.com/doc?99912

ROHS COMPLIANT HALOGEN FREE

ORDERING INFORMATION	
Package	SO-8
Lead (Pb)-free and halogen-free	SQ4532AEY (for detailed order number please see www.vishay.com/doc?79771)

ABSOLUTE MAXIMUM RATINGS (T _C = 25 °C, unless otherwise noted)							
PARAMETER		SYMBOL	N-CHANNEL	P-CHANNEL	UNIT		
Drain-source voltage		V_{DS}	30	-30	V		
Gate-source voltage	V_{GS}	±	V				
Continuous drain current	T _C = 25 °C		7.3	-5.3			
Continuous drain current	T _C = 125 °C	I _D	4.2	-3			
Continuous source current (diode conduction)	I _S	4.2	-3	Α			
Pulsed drain current ^a	I _{DM}	29	-21				
Single pulse avalanche current	L = 0.1 mH	I _{AS}	10	-9			
Single pulse avalanche energy	L = U.T IIIII	E _{AS}	5	4	mJ		
Maximum payor dissination 8	T _C = 25 °C	В	3.3	3.3	W		
Maximum power dissipation ^a	T _C = 125 °C	P_D	1.1	1.1]		
Operating junction and storage temperature range		T _J , T _{stg}	-55 to	+175	°C		

THERMAL RESISTANCE RATINGS					
PARAMETER		SYMBOL	N-CHANNEL	P-CHANNEL	UNIT
Junction-to-ambient	PCB mount ^b	R_{thJA}	110	105	°C/W
Junction-to-foot (drain)		R _{thJF}	45	45	C/VV

Notes

- a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %
- b. When mounted on 1" square PCB (FR4 material)
- c. Parametric verification ongoing

www.vishay.com

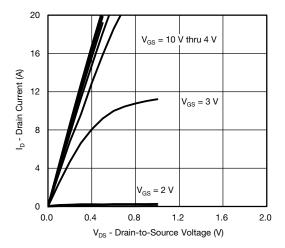
Vishay Siliconix

PARAMETER	SYMBOL	TEST CONDITIONS			MIN.	TYP.	MAX.	UNIT
Static						•		
Drain accurac breakdown valtage		V _{GS}	$V_{GS} = 0$, $I_D = 250 \mu A$		30	-	-	
Drain-source breakdown voltage	V_{DS}	V _{GS}	= 0, I _D = -250 μA	P-Ch	-30	-	-	\/
Coto accurac threshold valtage		V _{DS} =	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$		1.5	2	2.5	V
Gate-source threshold voltage	$V_{GS(th)}$	V _{DS} =	V _{GS} , I _D = -250 μA	P-Ch	-1.5	-2	-2.5	
Cata agurag lagkaga		V -	0 // // _ + 20 //	N-Ch	-	-	± 100	
Gate-source leakage	I _{GSS}	v _{DS} =	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$		-	-	± 100	nA
		$V_{GS} = 0 V$	V _{DS} = 30 V	N-Ch	-	-	1	
		$V_{GS} = 0 V$	V _{DS} = -30 V	P-Ch	-	-	-1	
Zara gata valtaga duain avumant		V _{GS} = 0 V	V _{DS} = 30 V, T _J = 125 °C	N-Ch	-	-	50	
Zero gate voltage drain current	I _{DSS}	V _{GS} = 0 V	V _{DS} = -30 V, T _J = 125 °C	P-Ch	-	-	-50	μA
		$V_{GS} = 0 V$	V _{DS} = 30 V, T _J = 175 °C	N-Ch	-	-	150	1
		V _{GS} = 0 V	V _{DS} = -30 V, T _J = 175 °C	P-Ch	-	-	-150	
On state duals assument 8	,	V _{GS} = 10 V	V _{DS} = 5 V	N-Ch	15	-	-	
On-state drain current ^a	I _{D(on)}	V _{GS} = -10 V	V _{DS} = -5 V	P-Ch	-15	-	-	Α
Drain-source on-state resistance ^a		V _{GS} = 10 V	I _D = 4.9 A	N-Ch	-	0.021	0.031	Ω
	R _{DS(on)}	V _{GS} = -10 V	I _D = -3.5 A	P-Ch	-	0.056	0.070	
		V _{GS} = 10 V	I _D = 4.9 A, T _J = 125 °C	N-Ch	-	-	0.064	
		V _{GS} = -10 V	I _D = -3.5 A, T _J = 125 °C	P-Ch	-	-	0.100	
		V _{GS} = 10 V	I _D = 4.9 A, T _J = 175 °C	N-Ch	-	-	0.082	
		V _{GS} = -10 V	I _D = -3.5 A, T _J = 175 °C	P-Ch	-	-	0.117	
		V _{GS} = 4.5 V	I _D = 4.1 A	N-Ch	-	0.033	0.042	
		V _{GS} = -4.5 V	I _D = -2.5 A	P-Ch	-	0.157	0.190	
Farmend transport described		V _{DS} =	= 15 V, I _D = 4.9 A	N-Ch	-	22	-	S
Forward transconductance b	9fs	V _{DS} =	-15 V, I _D = -3.5 A	P-Ch	-	5.5	-	
Dynamic ^b	_							
land annelland		V _{GS} = 0 V	V _{DS} = 15 V, f = 1 MHz	N-Ch	-	357	535	
Input capacitance	C _{iss}	V _{GS} = 0 V	V _{DS} = -15 V, f = 1 MHz	P-Ch	-	352	528	
Output conscitores		$V_{GS} = 0 V$	V _{DS} = 15 V, f = 1 MHz	N-Ch	-	82	123	
Output capacitance	C _{oss}	V _{GS} = 0 V	V _{DS} = -15 V, f = 1 MHz	P-Ch	-	95	142	pF
Davis turnefor and situate	-	$V_{GS} = 0 V$	V _{DS} = 15 V, f = 1 MHz	N-Ch	-	36	53	
Reverse transfer capacitance	C _{rss}	V _{GS} = 0 V	V _{DS} = -15 V, f = 1 MHz	P-Ch	-	59	88	
Total gate charge	Qg	V _{GS} = 10 V	$V_{DS} = 15 \text{ V}, I_{D} = 3.9 \text{ A}$	N-Ch	-	5.9	7.8	
		V _{GS} = -10 V	$V_{DS} = -15 \text{ V}, I_D = -2.5 \text{ A}$	P-Ch	-	7.9	10.2	1
Gate-source charge	Q_{gs}	V _{GS} = 10 V	$V_{DS} = 15 \text{ V}, I_D = 3.9 \text{ A}$	N-Ch	-	1	-	nC
		V _{GS} = -10 V	$V_{DS} = -15 \text{ V}, I_{D} = -2.5 \text{ A}$	P-Ch	-	1.1	-	7
Gate-source cnarge		+		N. O.		1.0	i e	1
		$V_{GS} = 10 \text{ V}$	$V_{DS} = 15 \text{ V}, I_{D} = 3.9 \text{ A}$	N-Ch	-	1.9	-	
Gate-drain charge ^c	Q _{gd}	$V_{GS} = 10 \text{ V}$ $V_{GS} = -10 \text{ V}$	$V_{DS} = 15 \text{ V}, I_D = 3.9 \text{ A}$ $V_{DS} = -15 \text{ V}, I_D = -2.5 \text{ A}$	N-Ch P-Ch	-	2.7	-	
	Q _{gd}					-	- - 5.1	Ω

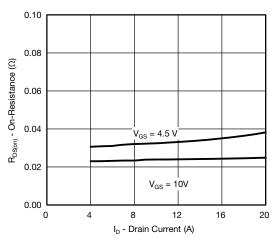
www.vishay.com

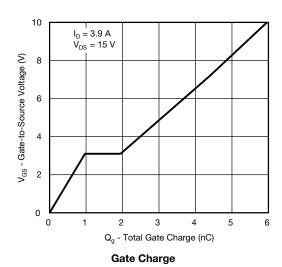
Vishay Siliconix

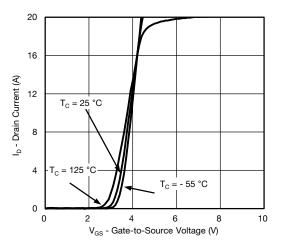
SPECIFICATIONS (T _C = 25 °C, unless otherwise noted)								
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT		
To a second design of the second	+	V_{DD} = 15 V, R_L = 15 Ω $I_D \cong$ 1 A, V_{GEN} = 10 V, R_g = 1 Ω	N-Ch	-	7 10			
Turn-on delay time	t _{d(on)}	V_{DD} = -15 V, R_L = 15 Ω I_D \cong -1 A, V_{GEN} = -10 V, R_g = 1 Ω	P-Ch	-	6	9		
Rise time	t _r	$\begin{aligned} V_{DD} &= 15 \text{ V}, \text{ R}_L = 15 \Omega \\ I_D &\cong 1 \text{ A}, \text{ V}_{GEN} = 10 \text{ V}, \text{ R}_g = 1 \Omega \end{aligned}$	N-Ch	-	17	21		
	ιγ	V_{DD} = -15 V, R_L = 15 Ω I_D \cong -1 A, V_{GEN} = -10 V, R_g = 1 Ω	P-Ch	-	17	21	ns	
Turn-off delay time	+	$\begin{aligned} V_{DD} &= 15 \text{ V}, \text{ R}_L = 15 \Omega \\ I_D &\cong 1 \text{ A}, \text{ V}_{GEN} = 10 \text{ V}, \text{ R}_g = 1 \Omega \end{aligned}$	N-Ch	ı	10	14		
	t _{d(off)}	V_{DD} = -15 V, R_L = 15 Ω $I_D \cong$ -1 A, V_{GEN} = -10 V, R_g = 1 Ω	P-Ch	_	19	24		
Fall time		V_{DD} = 15 V, R_L = 15 Ω $I_D \cong$ 1 A, V_{GEN} = 10 V, R_g = 1 Ω	N-Ch	-	19	24		
	t _f	V_{DD} = -15 V, R_L = 15 Ω I_D \cong -1 A, V_{GEN} = -10 V, R_g = 1 Ω	P-Ch	-	16	16 20		
Source-Drain Diode Ratings and Characteristics ^b								
Pulsed current ^a	la		N-Ch	-	-	29	Α	
	I _{SM}		P-Ch	-	-	-21	_ ^	
Forward voltage	V_{SD}	I _S = 2 A	N-Ch	-	0.8	1.2	V	
	V SD	I _S = -1.5 A P-Ch		-	-0.8	-1.2	\ \ \	


Notes

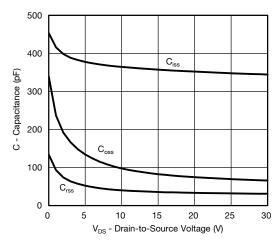
- a. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2~\%$
- b. Guaranteed by design, not subject to production testing
- c. Independent of operating temperature


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

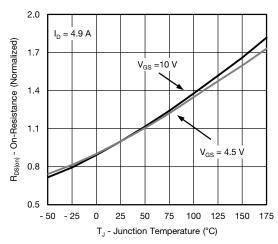

N-CHANNEL TYPICAL CHARACTERISTICS ($T_A = 25$ °C, unless otherwise noted)



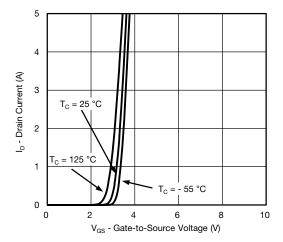
Output Characteristics

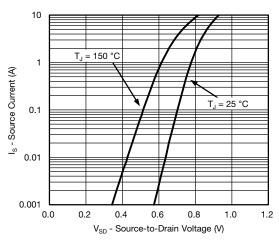


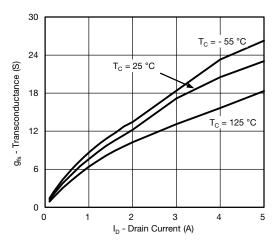
On-Resistance vs. Drain Current

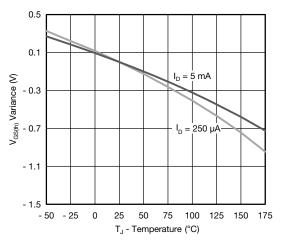


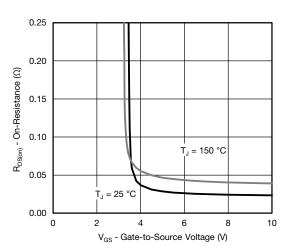
Transfer Characteristics

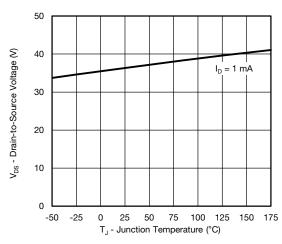

Capacitance


On-Resistance vs. Junction Temperature

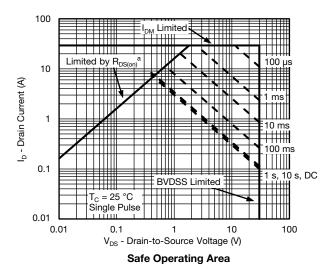

N-CHANNEL TYPICAL CHARACTERISTICS ($T_A = 25$ °C, unless otherwise noted)


Transfer Characteristics


Source Drain Diode Forward Voltage


Transconductance

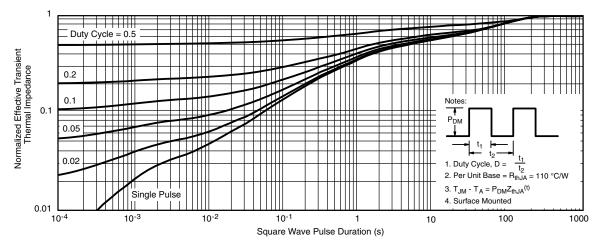
Threshold Voltage


On-Resistance vs. Gate-to-Source Voltage

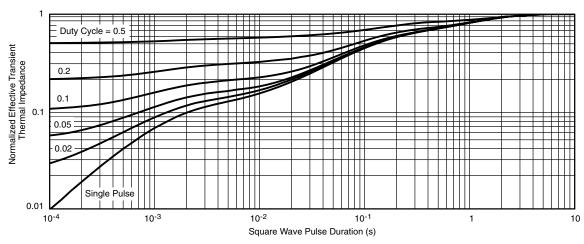
Drain Source Breakdown vs. Junction Temperature

Vishay Siliconix

N-CHANNEL THERMAL RATINGS ($T_A = 25$ °C, unless otherwise noted)



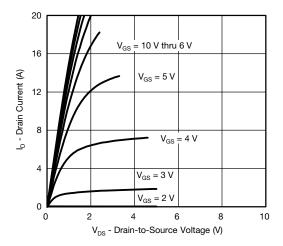
Note


a. $V_{GS} > \mbox{minimum} \ V_{GS}$ at which $R_{DS(on)}$ is specified

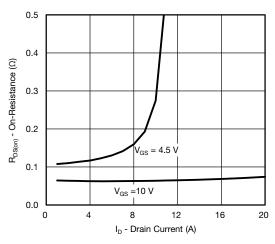
N-CHANNEL THERMAL RATINGS (T_A = 25 °C, unless otherwise noted)

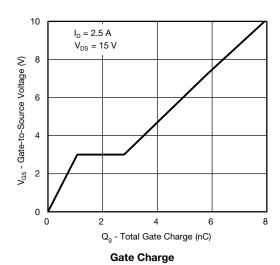
Normalized Thermal Transient Impedance, Junction-to-Ambient

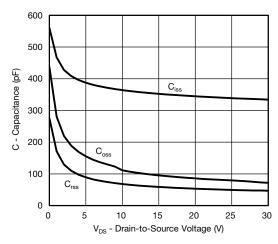
Normalized Thermal Transient Impedance, Junction-to-Foot

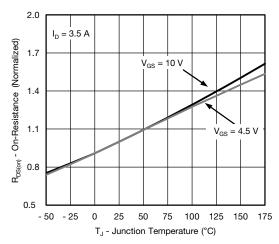

Note

- The characteristics shown in the two graphs
 - Normalized Transient Thermal Impedance Junction-to-Ambient (25 °C)
 - Normalized Transient Thermal Impedance Junction-to-Case (25 °C)

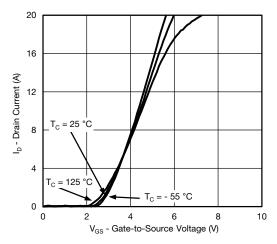

are given for general guidelines only to enable the user to get a "ball park" indication of part capabilities. The data are extracted from single pulse transient thermal impedance characteristics which are developed from empirical measurements. The latter is valid for the part mounted on printed circuit board - FR4, size 1" x 1" x 0.062", double sided with 2 oz. copper, 100 % on both sides. The part capabilities can widely vary depending on actual application parameters and operating conditions.

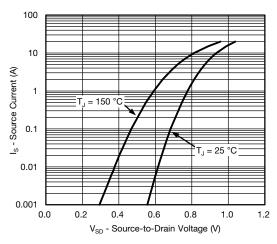

P-CHANNEL TYPICAL CHARACTERISTICS ($T_A = 25$ °C, unless otherwise noted)

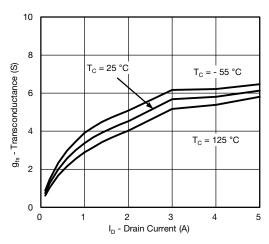

Output Characteristics

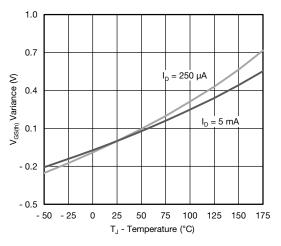

On-Resistance vs. Drain Current

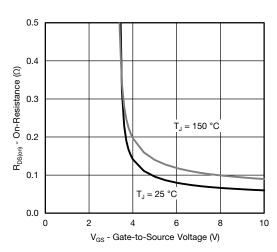
Transfer Characteristics

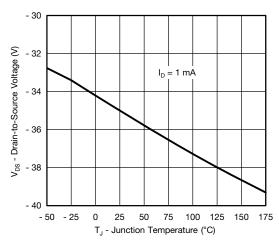

Capacitance


On-Resistance vs. Junction Temperature

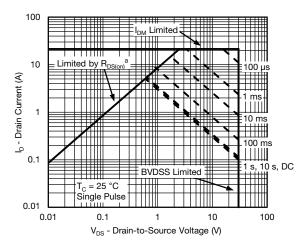

P-CHANNEL TYPICAL CHARACTERISTICS ($T_A = 25$ °C, unless otherwise noted)


Transfer Characteristics


Source Drain Diode Forward Voltage


Transconductance

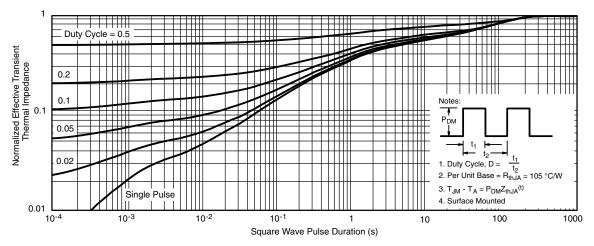
Threshold Voltage


On-Resistance vs. Gate-to-Source Voltage

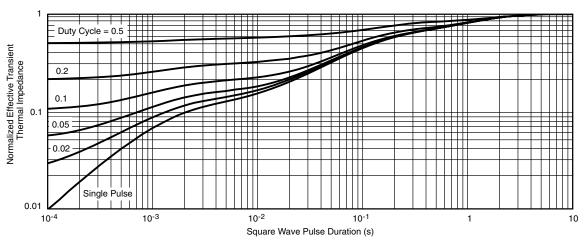
Drain Source Breakdown vs. Junction Temperature

Vishay Siliconix

P-CHANNEL THERMAL RATINGS ($T_A = 25$ °C, unless otherwise noted)


Safe Operating Area

Note

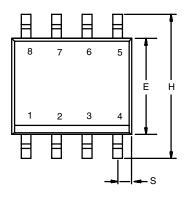

a. V_{GS} > minimum V_{GS} at which $R_{DS(on)}$ is specified

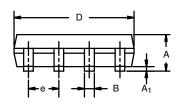
P-CHANNEL THERMAL RATINGS (T_A = 25 °C, unless otherwise noted)

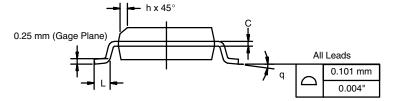
Normalized Thermal Transient Impedance, Junction-to-Ambient

Normalized Thermal Transient Impedance, Junction-to-Foot

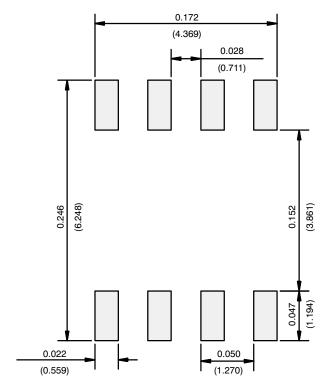
Note


- The characteristics shown in the two graphs
 - Normalized Transient Thermal Impedance Junction-to-Ambient (25 °C)
 - Normalized Transient Thermal Impedance Junction-to-Case (25 °C)


are given for general guidelines only to enable the user to get a "ball park" indication of part capabilities. The data are extracted from single pulse transient thermal impedance characteristics which are developed from empirical measurements. The latter is valid for the part mounted on printed circuit board - FR4, size 1" x 1" x 0.062", double sided with 2 oz. copper, 100 % on both sides. The part capabilities can widely vary depending on actual application parameters and operating conditions.


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?62981.

SOIC (NARROW): 8-LEAD JEDEC Part Number: MS-012


	MILLIM	IETERS	INCHES			
DIM	Min	Max	Min	Max		
Α	1.35	1.75	0.053	0.069		
A ₁	0.10	0.20	0.004	0.008		
В	0.35	0.51	0.014	0.020		
С	0.19	0.25	0.0075	0.010		
D	4.80	5.00	0.189	0.196		
Е	3.80	4.00	0.150	0.157		
е	1.27	BSC	0.050 BSC			
Н	5.80	6.20	0.228	0.244		
h	0.25	0.50	0.010	0.020		
L	0.50	0.93	0.020	0.037		
q	0°	8°	0°	8°		
S	0.44	0.64	0.018	0.026		
ECN: C-06527-Rev. I. 11-Sep-06						

DWG: 5498

Document Number: 71192 www.vishay.com 11-Sep-06

RECOMMENDED MINIMUM PADS FOR SO-8

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Ш

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Vishay manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 2N7000 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D

TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C

IPS70R2K0CEAKMA1 BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI

DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384

NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956

NTE2911 US6M2GTR TK10A80W,S4X(S SSM6P69NU,LF