
N-Channel 60 V (D-S), 175 °C MOSFET, Logic Level

PRODUCT SUMMARY				
V _{DS} (V)	$r_{DS(on)}(\Omega)$ $I_D(A$			
60	0.031 at V _{GS} = 10 V	23		
	$0.045 \text{ at V}_{GS} = 4.5 \text{ V}$	19.5		

FEATURES

- TrenchFET® Power MOSFET
- 175 °C Junction Temperature

Drain Connected to Tab

N-Channel MOSFET

Ordering Information: SUD23N06-31L SUD23N06-31L-E3 (Lead (Pb)-free)

Parameter		Symbol	Limit	Unit	
Gate-Source Voltage		V _{GS}	± 20	V	
Continuous Drain Current (T _J = 175 °C) ^b	T _C = 25 °C	I.	23		
	T _C = 100 °C	l l _D	16.5		
Pulsed Drain Current		I _{DM}	50	Α	
Continuous Source Current (Diode Conduction)		I _S	23		
Avalanche Current		I _{AS}	20		
Single Avalanche Energy (Duty Cycle ≤ 1 %)	L = 0.1 mH	E _{AS}	20	mJ	
Manianus Davis Discipation	T _C = 25 °C	В	100	14/	
Maximum Power Dissipation	T _A = 25 °C	P _D	3 ^a	W	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to 175	°C	

THERMAL RESISTANCE RATINGS					
Parameter		Symbol	Typical	Maximum	Unit
Maximum Junction-to-Ambient ^a	t ≤ 10 sec	R _{thJA}	18	22	°C/W
Maximum Junction-to-Ambient	Steady State	' ¹ thJA	40	50	
Maximum Junction-to-Case		R _{thJC}	3.2	4	

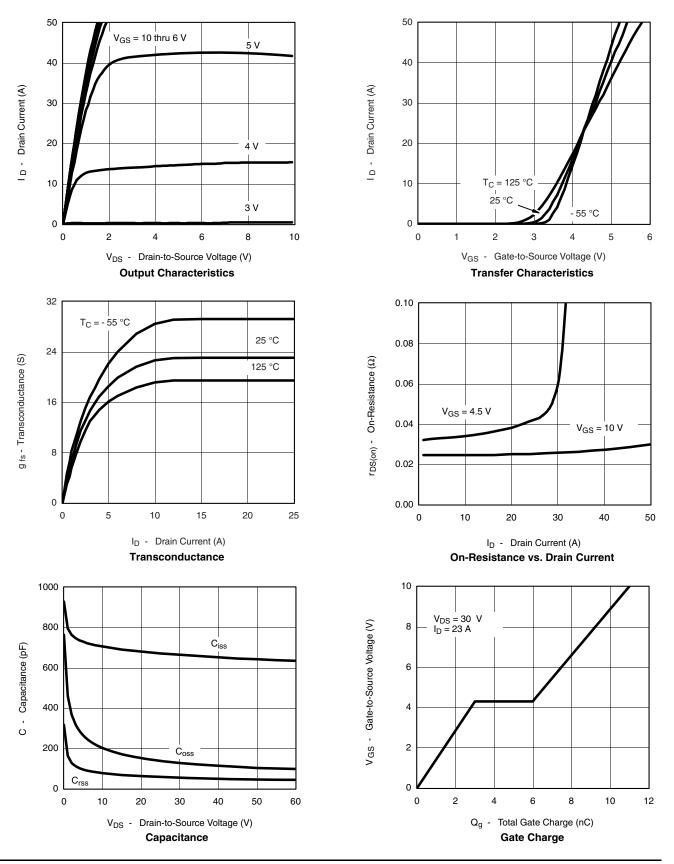
a. Surface Mounted on 1" x 1" FR4 board, $t \le 10$ sec.

^{*} Pb containing terminations are not RoHS compliant, exemptions may apply.

SUD23N06-31L

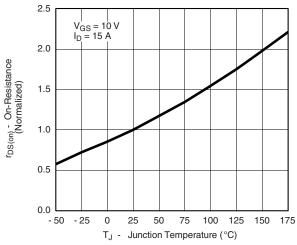
Vishay Siliconix

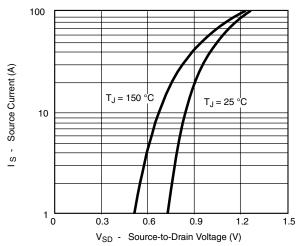
SPECIFICATIONS $T_J = 25$ Parameter	Symbol	Test Conditions	Min	Тура	Max	Unit	
Static	- Cynnoon	Tool Containons		קעי	Mux	J.III	
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 250 μA	60				
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \mu A$	1.0	2.0	3.0	V	
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			± 100	nA	
Zero Gate Voltage Drain Current	400	V _{DS} = 60 V, V _{GS} = 0 V			1	μΑ	
	I _{DSS}	V _{DS} = 60 V, V _{GS} = 0 V, T _J = 125 °C			50		
		V _{DS} = 60 V, V _{GS} = 0 V, T _J = 175 °C			250		
On-State Drain Current ^b	I _{D(on)}	V _{DS} = 5 V, V _{GS} = 10 V	50			Α	
Drain-Source On-State Resistance ^b	- ()	V _{GS} = 10 V, I _D = 15 A		0.025	0.031		
		V _{GS} = 10 V, I _D = 15 A, T _J = 125 °C			0.055		
	r _{DS(on)}	V _{GS} = 10 V, I _D = 15 A, T _J = 175 °C			0.069	Ω	
		V _{GS} = 4.5 V, I _D = 10 A		0.037	0.045		
Forward Transconductance ^b	9 _{fs}	V _{DS} = 15 V, I _D = 15 A		20		S	
Dynamic ^a	•			1			
Input Capacitance	C _{iss}			670		pF	
Output Capacitance	C _{oss}	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$		140			
Reverse Transfer Capacitance	C _{rss}			60			
Total Gate Charge ^c	Qg			11	17	nC	
Gate-Source Charge ^c	Q _{gs}	$V_{DS} = 30 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 23 \text{ A}$		3			
Gate-Drain Charge ^c	Q _{gd}			3			
Turn-On Delay Time ^c	t _{d(on)}			8	15	ns ns	
Rise Time ^c	t _r	V_{DD} = 30 V, R_L = 1.3 Ω I_D \cong 23 A, V_{GEN} = 10 V, R_g = 2.5 Ω		15	25		
Turn-Off Delay Time ^c	t _{d(off)}			30	45		
Fall Time ^c	t _f			25	40		
Source-Drain Diode Ratings and Cha	aracteristics	(T _C = 25 °C)		_			
Pulsed Current	I _{SM}				50	Α	
Diode Forward Voltage	V_{SD}	$I_F = 15 \text{ A}, V_{GS} = 0 \text{ V}$		1.0	1.5	V	
Reverse Recovery Time	t _{rr}	I _F = 15 A, di/dt = 100 A/μs		30	60	ns	


Notes:

- a. For design aid only; not subject to production testing.
- b. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %.
- c. Independent of operating temperature.

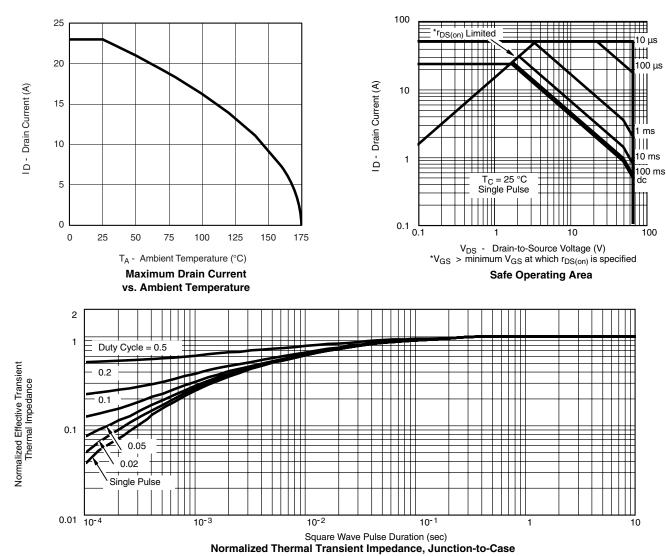
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


TYPICAL CHARACTERISTICS 25 °C unless noted


Vishay Siliconix

VISHAY.

TYPICAL CHARACTERISTICS 25 °C unless noted


On-Resistance vs. Junction Temperature

Source-Drain Diode Forward Voltage

THERMAL RATINGS

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?72145.

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Revision: 18-Jul-08

Document Number: 91000 www.vishay.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by Vishay manufacturer:

Other Similar products are found below:

614233C 648584F IRFD120 JANTX2N5237 2N7000 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D

TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C

IPS70R2K0CEAKMA1 BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI

DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384

NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956

NTE2911 TK10A80W,S4X(S SSM6P69NU,LF DMP22D4UFO-7B