N-Channel 40 V (D-S) MOSFET

PRODUCT SUMMARY			
$\mathbf{V}_{\mathbf{D S}}(\mathbf{V})$	$\mathbf{R}_{\mathrm{DS}(\text { on })}(\boldsymbol{\Omega}) \mathbf{~ M A X . ~}$	$\mathbf{I}_{\mathbf{D}}(\mathbf{A}) \mathbf{d}$	$\mathbf{Q}_{\mathbf{g}}(\mathbf{T Y P})$.
40	0.0016 at $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$	120	150
	0.0019 at $\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}$	120	

Ordering Information:

SUM40010EL-GE3 (lead (Pb)-free and halogen-free)

FEATURES

- TrenchFET ${ }^{\circledR}$ power MOSFET
- Operable with logic-level gate drive
- $100 \% \mathrm{R}_{\mathrm{g}}$ and UIS tested
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- Power supply
- Secondary synchronous rectification
- DC/DC converter
- Power tools
- Motor drive switch
- DC/AC inverter
- Battery management

N-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, unless otherwise noted)				
PARAMETER		SYMBOL	LIMIT	UNIT
Drain-Source Voltage		$\mathrm{V}_{\text {DS }}$	40	V
Gate-Source Voltage		V_{GS}	± 20	
Continuous Drain Current ($\mathrm{T}_{J}=150^{\circ} \mathrm{C}$)	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	ID	$120{ }^{\text {d }}$	A
	$\mathrm{T}_{\mathrm{C}}=70^{\circ} \mathrm{C}$		120 d	
Pulsed Drain Current ($\mathrm{t}=100 \mu \mathrm{~s}$)		I_{DM}	300	
Avalanche Current	$\mathrm{L}=0.1 \mathrm{mH}$	$\mathrm{I}_{\text {AS }}$	80	
Single Avalanche Energy ${ }^{\text {a }}$		$\mathrm{E}_{\text {AS }}$	320	mJ
Maximum Power Dissipation ${ }^{\text {a }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	$P_{\text {D }}$	$375{ }^{\text {b }}$	W
	$\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$		$125{ }^{\text {b }}$	
Operating Junction and Storage Temperature Range		$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-55 to +175	${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE RATINGS			
PARAMETER	SYMBOL	LIMIT	UNIT
Junction-to-Ambient (PCB Mount) $^{\text {c }}$	$\mathrm{R}_{\text {thJA }}$	40	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Case (Drain)	$\mathrm{R}_{\text {thJc }}$	0.4	

Notes

a. Duty cycle $\leq 1 \%$.
b. See SOA curve for voltage derating.
c. When mounted on 1" square PCB (FR4 material).
d. Package limited.

SPECIFICATIONS $\left(T_{J}=25{ }^{\circ} \mathrm{C}\right.$, unless otherwise noted)						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Static						
Drain-Source Breakdown Voltage	$\mathrm{V}_{\text {DS }}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	40	-	-	V
Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS} \text { (th) }}$	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	1.2	-	2.5	
Gate-Body Leakage	$\mathrm{I}_{\text {GSS }}$	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}$	-	-	± 250	nA
Zero Gate Voltage Drain Current	Idss	$\mathrm{V}_{\mathrm{DS}}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	-	-	1	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {DS }}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{J}=125^{\circ} \mathrm{C}$	-	-	150	
		$\mathrm{V}_{\mathrm{DS}}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{J}=175^{\circ} \mathrm{C}$	-	-	5	mA
On-State Drain Current ${ }^{\text {a }}$	$\mathrm{I}_{\mathrm{D}(\text { on) }}$	$\mathrm{V}_{\mathrm{DS}} \geq 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$	120	-	-	A
Drain-Source On-State Resistance ${ }^{\text {a }}$	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=30 \mathrm{~A}$	-	0.00127	0.00160	Ω
		$\mathrm{V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=20 \mathrm{~A}$	-	0.00152	0.00190	
Forward Transconductance ${ }^{\text {a }}$	g_{fs}	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=30 \mathrm{~A}$	-	174	-	S
Dynamic ${ }^{\text {b }}$						
Input Capacitance	$\mathrm{C}_{\text {iss }}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=30 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	-	11155	-	pF
Output Capacitance	$\mathrm{C}_{\text {oss }}$		-	7410	-	
Reverse Transfer Capacitance	$\mathrm{Crss}^{\text {d }}$		-	880	-	
Total Gate Charge ${ }^{\text {c }}$	Q_{g}	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=20 \mathrm{~A}$	-	150	230	nC
Gate-Source Charge ${ }^{\text {c }}$	Q_{gs}		-	32	-	
Gate-Drain Charge ${ }^{\text {c }}$	Q_{gd}		-	11	-	
Gate Resistance	R_{g}	$\mathrm{f}=1 \mathrm{MHz}$	0.32	1.6	3.2	Ω
Turn-On Delay Time ${ }^{\text {c }}$	$\mathrm{t}_{\mathrm{d}(\mathrm{on})}$	$\begin{gathered} V_{D D}=20 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \Omega \\ \mathrm{I}_{\mathrm{D}} \cong 10 \mathrm{~A}, \mathrm{~V}_{\mathrm{GEN}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{g}}=1 \Omega \end{gathered}$	-	16	32	ns
Rise Time ${ }^{\text {c }}$	t_{r}		-	20	40	
Turn-Off Delay Time ${ }^{\text {c }}$	$t_{\text {d(off) }}$		-	65	100	
Fall Time ${ }^{\text {c }}$	t_{f}		-	17	35	
Drain-Source Body Diode Ratings and Characteristics ${ }^{\mathbf{b}}\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$						
Pulsed Current ($\mathrm{t}=100 \mu \mathrm{~s}$)	$\mathrm{I}_{\text {SM }}$		-	-	300	A
Forward Voltage ${ }^{\text {a }}$	$\mathrm{V}_{\text {SD }}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	-	0.8	1.5	V
Reverse Recovery Time	t_{rr}	$\mathrm{I}_{\mathrm{F}}=41 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}$	-	135	203	ns
Peak Reverse Recovery Charge	$\mathrm{I}_{\mathrm{RM}(\mathrm{REC})}$		-	5	10	A
Reverse Recovery Charge	Q_{rr}		-	0.340	0.510	$\mu \mathrm{C}$

Notes

a. Pulse test; pulse width $\leq 300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.
b. Guaranteed by design, not subject to production testing.
c. Independent of operating temperature.

[^0]TYPICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Output Characteristics

Transconductance

Capacitance

Transfer Characteristics

On-Resistance vs. Drain Current

TYPICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

On-Resistance vs. Junction Temperature

On-Resistance vs. Gate-to-Source Voltage

Source Drain Diode Forward Voltage

Threshold Voltage

Drain Source Breakdown vs. Junction Temperature

SUM40010EL
Vishay Siliconix
THERMAL RATINGS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Safe Operating Area

Single Pulse Avalanche Current Capability vs. Time

THERMAL RATINGS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Note

- The characteristics shown in the two graphs
- Normalized Transient Thermal Impedance Junction to Ambient ($25^{\circ} \mathrm{C}$)
- Normalized Transient Thermal Impedance Junction to Case $\left(25^{\circ} \mathrm{C}\right)$
are given for general guidelines only to enable the user to get a "ball park" indication of part capabilities. The data are extracted from single pulse transient thermal impedance characteristics which are developed from empirical measurements. The latter is valid for the part mounted on printed circuit board - FR4, size $1^{\prime \prime} \times 1$ " $\times 0.062$ ", double sided with 2 oz. copper, 100% on both sides. The part capabilities can widely vary depending on actual application parameters and operating conditions.

[^1]
TO-263 (D²PAK): 3-LEAD

| 0.010 (1) $\mathrm{A}(1)$
2 PL

DETAIL A (ROTATED 90°)

Notes

1. Plane B includes maximum features of heat sink tab and plastic.
2. No more than 25 \% of L1 can fall above seating plane by max. 8 mils.
3. Pin-to-pin coplanarity max. 4 mils.
4. *: Thin lead is for SUB, SYB.

Thick lead is for SUM, SYM, SQM.
5. Use inches as the primary measurement. This feature is for thick lead.

DIM.		INCHES		MILLIMETERS	
		MIN.	MAX.	MIN.	MAX.
	A	0.160	0.190	4.064	4.826
	b	0.020	0.039	0.508	0.990
	b1	0.020	0.035	0.508	0.889
	b2	0.045	0.055	1.143	1.397
c^{*}	Thin lead	0.013	0.018	0.330	0.457
	Thick lead	0.023	0.028	0.584	0.711
c1	Thin lead	0.013	0.017	0.330	0.431
	Thick lead	0.023	0.027	0.584	0.685
c2		0.045	0.055	1.143	1.397
D		0.340	0.380	8.636	9.652
D1		0.220	0.240	5.588	6.096
D2		0.038	0.042	0.965	1.067
D3		0.045	0.055	1.143	1.397
D4		0.044	0.052	1.118	1.321
E		0.380	0.410	9.652	10.414
E1		0.245	-	6.223	-
E2		0.355	0.375	9.017	9.525
E3]		0.072	0.078	1.829	1.981
e		0.100 BSC		2.54 BSC	
K		0.045	0.055	1.143	1.397
L		0.575	0.625	14.605	15.875
L1		0.090	0.110	2.286	2.794
L2		0.040	0.055	1.016	1.397
L3		0.050	0.070	1.270	1.778
L4		0.010 BSC		0.254 BSC	
	M	-	0.002	-	0.050
ECN: T13-0707-Rev. K, 30-Sep-13 DWG: 5843					

RECOMMENDED MINIMUM PADS FOR D²PAK: 3-Lead

Recommended Minimum Pads
Dimensions in Inches/(mm)

Return to Index

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for MOSFET category:
Click to view products by Vishay manufacturer:

Other Similar products are found below :
614233C 648584F IRFD120 JANTX2N5237 2N7000 FCA20N60_F109 FDZ595PZ 2SK2545(Q,T) 405094E 423220D
TPCC8103,L1Q(CM MIC4420CM-TR VN1206L 614234A 715780A NTNS3166NZT5G SSM6J414TU,LF(T 751625C
IPS70R2K0CEAKMA1 BUK954R8-60E DMN3404LQ-7 NTE6400 SQJ402EP-T1-GE3 2SK2614(TE16L1,Q) 2N7002KW-FAI
DMN1017UCP3-7 EFC2J004NUZTDG ECH8691-TL-W FCAB21350L1 P85W28HP2F-7071 DMN1053UCP4-7 NTE221 NTE2384
NTE2903 NTE2941 NTE2945 NTE2946 NTE2960 NTE2967 NTE2969 NTE2976 NTE455 NTE6400A NTE2910 NTE2916 NTE2956
NTE2911 US6M2GTR TK10A80W,S4X(S SSM6P69NU,LF

[^0]: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

[^1]: Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?66984.

