

1/4" Multi-Turn Fully Sealed Container Cermet Trimmer

Due to their square shape and small size (6.8 mm x 6.8 mm x 5 mm), the multi-turn trimmers of the T63 series are ideally suited for PCB use, enabling high density board mounting with reduced space requirement between cards.

Six versions are available differing by the top or side position of the adjustment screw and by PC pins configuration.

The use of cermet for the resistive track ensures an excellent stability of nominal specifications throughout life.

FEATURES

- 0.25 W at 70 °C
- Industrial grade
- Tests according to CECC 41000 or IEC 60393-1
- Multi-turn operation
- Low contact resistance variation < 2 %
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

DIMEN	ENSIONS in millimeters (± 0.5 mm)					
				Terminal Spacing on a 2.54 PCB		
Т63ХА	0 0.45 2.54 2.54 0.5 x 0.5 2.3 ± 0.2	$6.8 \pm 0.2 4 \text{ min.}$ $6.8 \pm 0.2 4 \text{ min.}$ $6.8 \pm 0.2 5 \text{ min.}$	5 max.			
төзхв	1.2 ± 0.3 2.54 2.54 2.54 2.54 0.5 x 0.5	6.8 ± 0.2 4 min. 6.8 ± 0.2 b 6.8 ± 0.2 c 0.7 0 1.8 c 5.7 ± 0.1	5 max.			
Т6ЗҮА	2.54 2.54 2.3 ± 0.2	$\begin{array}{c} 7.8 \text{ max.} \\ 6.8 \pm 0.2 \text{ 4 min.} \\ \hline 0 1.8 \\ \pm 0.2 \\ \hline \end{array} \\ a \\ c \\ \hline 0.25 \\ \hline \end{array}$	5 max.			
Т6ЗҮВ	1.2 ± 0.3 2.54 2.54 2.54	$6.8 \pm 0.2 4 \text{ min.}$ $4 0 1.8 + 0.2 4 \text{ min.}$ $6.8 \pm 0.2 4 \text{ min.}$ $6.8 \pm 0.2 4 \text{ min.}$ $- 0 - 0 \text{ min.}$ $- 0 - 0 \text{ min.}$	$5 \text{ max.} \\ 1 \pm 0.1 \\ 1.3 \pm 0.1$			
T63ZA		$\begin{array}{c c} & & & & 6.8 \pm 0.2 \\ \hline & & & & & c \\ 6.8 \pm 0.2 & & & & b \\ \hline & & & & & c \\ 6.8 \pm 0.2 & & & & b \\ \hline & & & & & c \\ \hline & & c \\ \hline & & & c \\ \hline & c \\ \hline & & c \\ \hline & c \\ \hline & c \\$	1.3 ± 0.1			
T63ZB		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 ± 0.1 5 max. 4 min.			

Revision: 09-Sep-16

1 For technical questions, contact: <u>sferpottrimmers@vishay.com</u> Document Number: 51024

RoHS

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 VISHAY www.vishay.com

Vishay Sfernice

T63

Resistive element		Cermet				
Electrical travel		14 turns ± 2				
Resistance range		10 Ω to 2.2 MΩ				
Standard series and on request s	series E3	1 - 2 - 5 (1 - 2.2 - 4.7)				
Tolerance	Standard	± 10 %				
Tolerance	On request	± 5 %				
	Linear	0.25 W at 70 °C				
Power rating		0.25 N H 0 0 0 0 0 0 0 0 0 0 0 0 0				
Circuit diagram		$ \begin{array}{c} a \\ O \\ (1) \\ b \\ c \\ (2) \end{array} $				
Temperature coefficient		See Standard Resistance Element table				
Limiting element voltage (linear law)		250 V				
Contact resistance variation End resistance (typical)		2 % Rn or 2 Ω 1 Ω				
						Dielectric strength (RMS)
Insulation resistance (500 V _{DC})		10 ⁶ ΜΩ				

MECHANICAL SPECIFICATIONS			
Mechanical travel	15 turns ± 5		
Operating torque (max. Ncm)	1.5		
End stop torque	Clutch action		
Unit weight (max. g)	0.5		
Wiper (actual travel)	Positioned at approx. 50 %		
Terminals	Pure Sn (code e3)		

ENVIRONMENTAL SPECIFICATIONS		
Temperature range	-55 °C to +155 °C	
Climatic category	55/125/56	
Sealing	Fully sealed - IP67	

2

Vishay Sfernice

PERFORMANCES					
TESTS	CONDITIONS	TYPICAL VALUES AND DRIFTS			
12313	CONDITIONS	$\Delta R_{T}/R_{T}$	∆ R₁₋₂/R₁₋₂	OTHER	
Electrical endurance	1000 h at rated power 90'/30' - ambient temperature 70 °C	±1%	±2 %	Contact res. variation: < 1 % Rn	
Climatic sequence	uence Phase A dry heat 125 °C - 30 % Pr Phase B damp heat Phase C cold -55 °C Phase D damp heat 5 cycles		±1%	-	
Damp heat, steady state 56 days 40 °C, 93 % RH		± 0.5 %	±1%	Dielectric strength: 1000 V _{RMS} Insulation resistance: > $10^4 M\Omega$	
Rapid temperature change	pid temperature change 5 cycles -55 °C to +125 °C		-	$\Delta V_{1-2}/V_{1-3} \le \pm 1 \%$	
Shock	50 g at 11 ms 3 successive shocks in 3 directions	± 0.1 %	± 0.2 %	-	
Vibration	10 Hz to 55 Hz 0.75 mm or 10 <i>g</i> during 6 h	± 0.1 %	-	$\Delta V_{1-2}/V_{1-3} \le \pm 0.2$ %	
Mechanical endurance	200 cycles	± (2 % + 3 Ω)	-	Contact res. variation: < 1 % Rn	

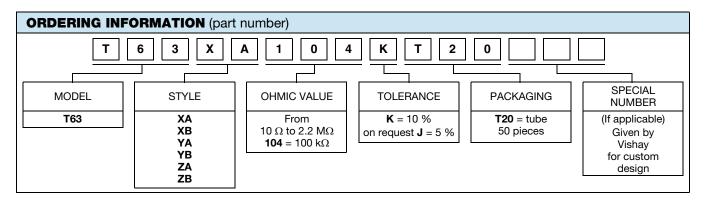
Note

• Nothing stated herein shall be construed as a guarantee of quality or durability.

STANDARD RESISTANCE ELEMENT DATA					
STANDARD		TYPICAL			
RESISTANCE VALUES	MAX. POWER AT 70 °C	MAX. WORKING VOLTAGE	MAX. WIPER CURRENT	TCR -55 °C +125 °C	
Ω	W	V	mA	ppm/°C	
10	0.25	1.58	158		
20	0.25	2.23	112		
50	0.25	3.5	77		
100	0.25	35	50		
200	0.25	7.07	35		
500	0.25	11.2	22		
1K	0.25	15.8	15.8		
2K	0.25	22.3	11.2		
5K	0.25	35.3	7.1		
10K	0.25	50	5	± 100	
20K	0.25	70.7	3.5		
25K	0.25	79	3.2		
50K	0.25	112	2.2		
100K	0.25	158	1.6		
200K	0.25	224	1.1		
250K	0.25	250	1.1		
500K	0.13	250	0.5		
1M	0.06	250	0.25		
2.2M	0.03	250	0.125		

MARKING

- Vishay trademark
- Model
- Style
- Ohmic value (in Ω, kΩ, MΩ)
- Tolerance (in %) only if non standard
- Manufacturing date
- Marking of terminal 3


PACKAGING

• In tube of 50 pieces code T20 (TU50)

Vishay Sfernice

T63

DESCRIPTION (for information only)						
T63	XA	100K	10 %		TU	e3
MODEL	STYLE	VALUE	TOLERANCE	SPECIAL	PACKAGING	LEAD (Pb)-FREE

RELATED DOCUMENTS				
APPLICATION NOTES				
Potentiometers and Trimmers	www.vishay.com/doc?51001			
Guidelines for Vishay Sfernice Resistive and Inductive Components	www.vishay.com/doc?52029			

4

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Trimmer/Variable Capacitors category:

Click to view products by Vishay manufacturer:

Other Similar products are found below :

8000-5130 GKY20086 GNC8R050 GXA18000 GXA36000 GXC90000 GXE5R000NM GXL10000 GZN60100 PC50H230 PC50J110 PC51H230 GDT40026 GKU90020 GNR4R550 GNR8R050 GXL15000 538-011 D 9-35LF SGC3S100NM PC39G520 STPTIC-15G2C5 STPTIC-82G2C5 GNL8R050 GYB5R000 BFC280823508 GXL18000 GKG30086-05 GHC5R500 GKG10086 GZD80000 0538-000-A-5.5-18LF 0538-006-F-15.0-60LF TP11G KT1SD KF8 KP8 KM8 KG8 KJ8 KT8 KG10 KP10 KF10 KJ10 KM10 TP42C NMAJ25HV TM120C KF4SD KJ1SD