

Vishay Semiconductors

Optocoupler, Phototransistor Output

DESCRIPTION

The TCDT1120(G) series consists of a phototransistor optically coupled to a gallium arsenide infrared emitting diode in a 6 lead plastic dual in line package.

FEATURES

- High common mode rejection
- Four CTR groups available
- Compliant to RoHS directive 2002/95/EC and in accordance to WEEE 2002/96/EC

APPLICATIONS

- Switch-mode power supplies
- · Line receiver
- Computer peripheral interface
- Microprocessor system interface
- Reinforced isolation provides circuit protection against electrical shock (safety class II)
- Circuits for safe protective separation against electrical shock according to safety class II (reinforced isolation):
 - for appl. class I IV at mains voltage ≤ 300 V
 - for appl. class I III at mains voltage \leq 600 V according to DIN EN 60747-5-5

AGENCY APPROVALS

- UL1577, file no. E52744, double protection
- BSI IEC 60950 IEC 60065
- DIN EN 60747-5-5 (VDE 0884)
- FIMKO
- cUL tested to CSA 22.2 bulletin 5A

ORDER INFORMATION (1)					
PART	REMARKS				
TCDT1120	CTR > 40 %, DIP-6				
TCDT1122	CTR 63 % to 125 %, DIP-6				
TCDT1123	CTR 100 % to 200 %, DIP-6				
TCDT1124	CTR 160 % to 320 %, DIP-6				
TCDT1120G	CTR > 40 %, DIP-6				
TCDT1122G	CTR 63 % to 125 %, DIP-6				
TCDT1123G	CTR 100 % to 200 %, DIP-6				
TCDT1124G	CTR 160 % to 320 %, DIP-6				

Note

 $^{(1)}$ G = leadform 10.16 mm; G is not marked on the body.

TCDT1120, TCDT1120G

Vishay Semiconductors Optocoupler, Phototransistor Output

ABSOLUTE MAXIMUM RATINGS (1)								
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT				
INPUT								
Reverse voltage		V_R	5	V				
Forward current		I _F	60	mA				
Forward surge current	t _p ≤ 10 μs	I _{FSM}	3	Α				
Power dissipation		P _{diss}	100	mW				
Junction temperature		T _j	125	°C				
OUTPUT								
Collector emitter voltage		V _{CEO}	70	V				
Emitter collector voltage		V _{ECO}	7	V				
Collector current		I _C	50	mA				
Collector peak current	$t_p/T = 0.5, t_p \le 10 \text{ ms}$	I _{CM}	100	mA				
Power dissipation		P _{diss}	150	mW				
Junction temperature		T _j	125	°C				
COUPLER								
Isolation test voltage (RMS)	t = 1 s	V _{ISO}	5000	V_{RMS}				
Total power dissipation		P _{tot}	250	mW				
Ambient temperature range		T _{amb}	- 55 to + 100	°C				
Storage temperature range		T _{stg}	- 55 to + 125	°C				
Soldering temperature (2)	2 mm from case, t ≤ 10 s	T _{sld}	260	°C				

Notes

⁽²⁾ Refer to wave profile for soldering conditions for through hole devices (DIP).

ELECTRICAL CHARACTERISTCS (1)									
PARAMETER	TEST CONDITION SYMBOL MIN. TYP. MAX.								
INPUT									
Forward voltage	$I_F = 50 \text{ mA}$	V _F		1.25	1.6	V			
Junction capacitance	$V_R = 0 V, f = 1 MHz$	C _j		50		pF			
OUTPUT									
Collector base voltage	I _C = 100 μA	V_{CBO}	90			V			
Collector emitter voltage	I _C = 1 mA	V_{CEO}	90			V			
Emitter collector voltage	I _E = 100 μA	V _{ECO}	7		V				
Collector ermitter cut-off current	$V_{CE} = 20 \text{ V}, I_F = 0 \text{ A}$	I _{CEO}			150	nA			
COUPLER									
Collector emitter saturation voltage	$I_F = 10 \text{ mA}, I_C = 1 \text{ mA}$	V _{CEsat}			0.3	V			
Cut-off frequency	$V_{CE} = 5 \text{ V}, I_F = 10 \text{ mA}, R_L = 100 \Omega$ f _c 110		kHz						
Coupling capacitance	ng capacitance $f = 1 \text{ MHz}$ C_k 0.3			pF					

Note

Minimum and maximum values are tested requierements. Typical values are characteristics of the device and are the result of engineering evaluations. Typical values are for information only and are not part of the testing requirements.

 $^{^{(1)}}$ T_{amb} = 25 $^{\circ}$ C, unless otherwise specified.

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute maximum ratings for extended periods of the time can adversely affect reliability.

 $^{^{(1)}}$ T_{amb} = 25 °C, unless otherwise specified.

CURRENT TRANSFER RATIO								
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT	
		TCDT1120	CTR	10			%	
		TCDT1120G	CIN	10			70	
		TCDT1122	CTR	15			%	
	V 5 V I 1 m/	TCDT1122G	CIN	15			70	
	V _{CE} = 5 V, I _F = 1 mA	TCDT1123	CTR	30			%	
		TCDT1123G	CIN	30			70	
		TCDT1124	- CTR	60			%	
I _C /I _F		TCDT1124G					70	
IC/ IF		TCDT1120	CTR	40			%	
		TCDT1120G					70	
		TCDT1122	CTR	63		125	%	
	V _{CE} = 5 V, I _F = 10 mA	TCDT1122G				125	70	
	V _{CE} = 5 V, I _F = 10 IIIA	TCDT1123	CTR	100		200	%	
		TCDT1123G	OIN	100		200	70	
		TCDT1124	CTR	160		320	%	
		TCDT1124G	OIN	100		320	70	

MAXIMUM SAFETY RATINGS (1)								
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT		
INPUT								
Forward current		I _F			130	mA		
OUTPUT								
Power dissipation		P _{diss}			265	mW		
COUPLER	COUPLER							
Rated impulse voltage		V _{IOTM}			6	kV		
Safety temperature		T _{si}			150	°C		

Note

⁽¹⁾ According to DIN EN 60747-5-5 (see figure 2). This optocoupler is suitable for safe electrical isolation only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.

INSULATION RATED PARAMETERS								
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT		
Partial discharge test voltage - routine test	100 %, t _{test} = 1 s	V_{pd}	1.6			kV		
Partial discharge test voltage -	$t_{Tr} = 60 \text{ s}, t_{test} = 10 \text{ s},$ (see figure 2)	V_{IOTM}	6			kV		
lot test (sample test)		V_{pd}	1.3			kV		
	V _{IO} = 500 V	R _{IO}	10 ¹²			Ω		
insulation resistance	$V_{IO} = 500 \text{ V}, T_{amb} \leq 100 ^{\circ}\text{C}$	R _{IO}	10 ¹¹			Ω		
	V _{IO} = 500 V, T _{amb} ≤ 150 °C (construction test only)	R _{IO}	10 ⁹			Ω		

TCDT1120, TCDT1120G

Vishay Semiconductors Optocoupler, Phototransistor Output

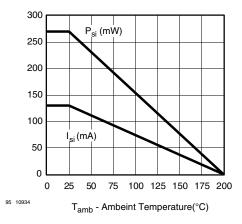


Fig. 1 - Derating Diagram

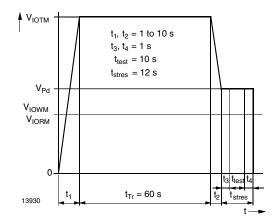


Fig. 2 - Test Pulse Diagram for Sample Test According to DIN EN 60747-5-5/DIN EN 60747-; IEC 60747

PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
		TCDT1120			10		^
		TCDT1120G	- I _F		10		mA
Current time	V F V D 100 O (con figure 2)	TCDT1123			10		A
Current time	$V_S = 5 \text{ V}, R_L = 100 \Omega$, (see figure 3)	TCDT1123G	- I _F		10		mA
		TCDT1124	1_		10		mA
		TCDT1124G	- I _F		10		IIIA
		TCDT1120	+_		2.5		116
		TCDT1120G	t _D		2.5		μs
Delay time	$V_S = 5 \text{ V}, R_L = 100 \Omega, \text{ (see figure 3)}$	TCDT1123	+_		2.8		
Delay time	vg = 5 v, ri_ = 100 sz, (see rigure 5)	TCDT1123G	t _D		2.0		μs
		TCDT1124	t _D		2		μs
		TCDT1124G	ι)		2		μδ
		TCDT1120	- t _r		3		μs
		TCDT1120G			, and the second		μο
Rise time	$V_S = 5 \text{ V}, R_L = 100 \Omega$, (see figure 3)	TCDT1123	t _r		4.2		μs
Tiloc time	VS = 0 V, Ti_ = 100 12, (000 figure 0)	TCDT1123G					μο
		TCDT1124	- t _r		4		μs
		TCDT1124G			7		μο
		TCDT1120	- t _s		0.3		μs
		TCDT1120G	-8		0.0		μο
Storage time	$V_S = 5 \text{ V}, R_L = 100 \Omega, \text{ (see figure 3)}$	TCDT1123	t _s		0.3		μs
Ctorago anno	15 = 0 1, 11 = 100 12, (000 ligate 0)	TCDT1123G	-5				μο
		TCDT1124	t _s				μs
		TCDT1124G	•5		0.0		μο
		TCDT1120	t _f		3.7		μs
		TCDT1120G	-				F
Fall time	$V_S = 5 \text{ V}, R_L = 100 \Omega, \text{ (see figure 3)}$	TCDT1123	t _f		4.7		μs
	13 0 1, 120 12, (200 ligation)	TCDT1123G	*1				F.5
		TCDT1124	t _f		4.7		μs
		TCDT1124G	-1				

SWITCHING CHARACTERISTICS							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
		TCDT1120					
		TCDT1120G	t _{on}		5.5		μs
Turn-on time	$V_S = 5 \text{ V}, R_L = 100 \Omega$, (see figure 3)	TCDT1123	+		7		
rum-on time	v _S = 3 v, n _L = 100 s ₂ , (see lightle 3)	TCDT1123G	t _{on}		1		μs
		TCDT1124	+		6		116
		TCDT1124G	t _{on}		U		μs
		TCDT1120	+		4	1	116
		TCDT1120G	t _{off}		7		μs
Turn-off time	$V_S = 5 \text{ V}, R_L = 100 \Omega$, (see figure 3)	TCDT1123	+		5		μs
rum on ume	VS = 5 V, TiL = 100 32, (See figure 5)	TCDT1123G	- t _{off}		3		μο
		TCDT1124	- t _{off}		5		μs
		TCDT1124G					
		TCDT1120	- t _{on}		16.5		μs
		TCDT1120G					μο
Turn-on time	$V_S = 5 \text{ V}, R_L = 1 \text{ k}\Omega$, (see figure 4)	TCDT1123	t _{on}		21.5		μs
	13 0 1, 1.2 1 122, (800 19410 1)	TCDT1123G	-011				μ.σ
		TCDT1124	- t _{on}		20		μs
		TCDT1124G	-011				μ.σ
		TCDT1120	t _{off}		22.5		μs
		TCDT1120G	-011				μο
Turn-off time	$V_S = 5 \text{ V}, R_L = 1 \text{ k}\Omega$, (see figure 4)	TCDT1123	t _{off}		37.5		μs
	5 - 1, 1. <u>L</u> 1 1, (2.1.) 1. g a. 0 1,	TCDT1123G	2011				F
		TCDT1124	t _{off}		50		μs
		TCDT1124G	-011				L. ±

TYPICAL CHARACTERISTICS

T_{amb} = 25 °C, unless otherwise specified

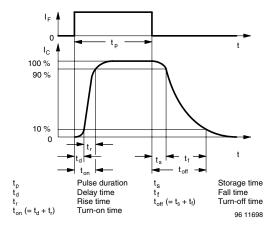


Fig. 3 - Switching Times

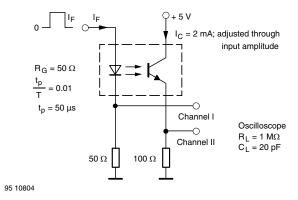


Fig. 4 - Test Circuit, Non-Saturated Operation

Vishay Semiconductors Optocoupler, Phototransistor Output

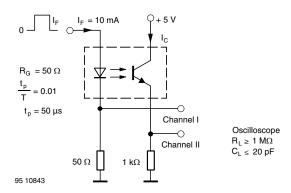


Fig. 5 - Test Circuit, Saturated Operation

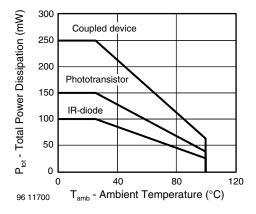


Fig. 6 - Total Power Dissipation vs. Ambient Temperature

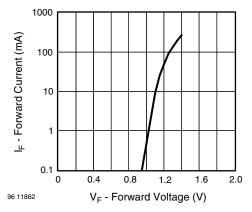


Fig. 7 - Forward Current vs. Forward Voltage

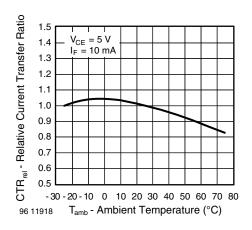


Fig. 8 - Relative Current Transfer Ratio vs. Ambient Temperature

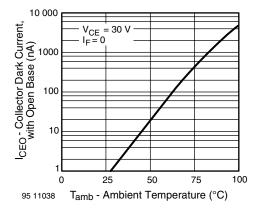


Fig. 9 - Collector Dark Current vs. Ambient Temperature

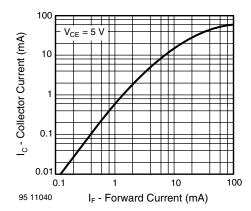


Fig. 10 - Collector Current vs. Forward Current

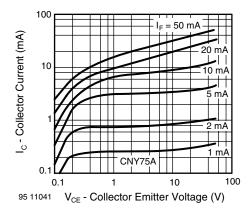


Fig. 11 - Collector Current vs. Collector Emitter Voltage

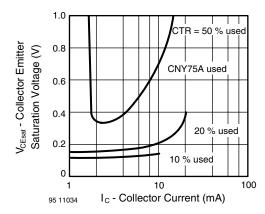


Fig. 12 - Collector Emitter Saturation Voltage vs. Collector Current

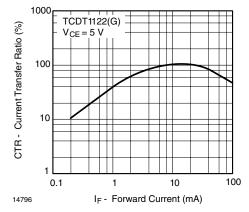


Fig. 13 - Current Transfer Ratio vs. Forward Current

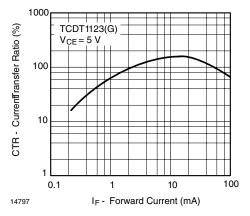


Fig. 14 - Current Transfer Ratio vs. Forward Current

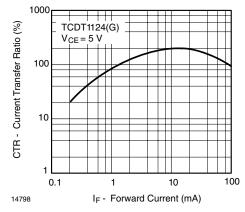


Fig. 15 - Current Transfer Ratio vs. Forward Current

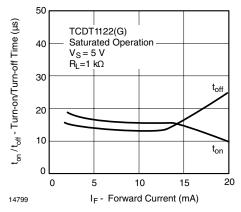


Fig. 16 - Turn-on/off Time vs. Forward Current

Vishay Semiconductors Optocoupler, Phototransistor Output

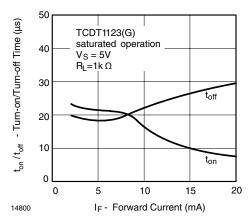


Fig. 17 - Turn-on/off Time vs. Forward Current

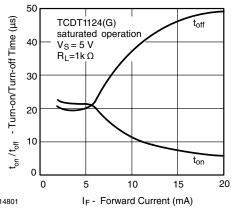


Fig. 18 - Turn-on/off Time vs. Forward Current

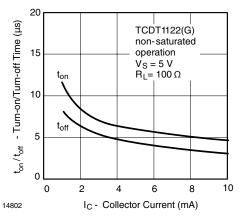


Fig. 19 - Turn-on/off Time vs. Collector Current

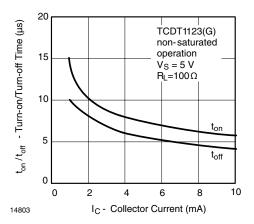


Fig. 20 - Turn-on/off Time vs. Collector Current

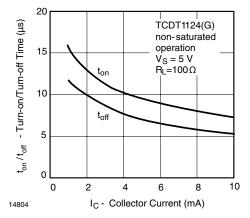
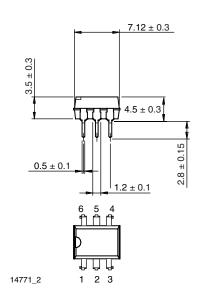
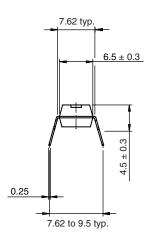
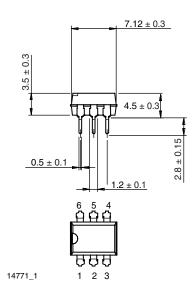
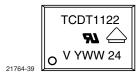




Fig. 21 - Turn-on/off Time vs. Collector Current



PACKAGE DIMENSIONS in millimeters **DIP-6**



DIP-6, 400 mil

PACKAGE MARKING

Note

Example of making used for the TCDT1122 and TCDT1122G

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Transistor Output Optocouplers category:

Click to view products by Vishay manufacturer:

Other Similar products are found below:

LTV-814S-TA LTV-824HS LTV-852S 66095-001 6N136-X017T MCT6-X007 MOC8101-X017T PS2561A-1-W-A PS2561B-1-L-A PS2561L-1-V-A MRF658 IL755-1X007 ILD74-X001 ILQ615-2X017 ILQ615-3X016 LDA102S LDA110S PS2561-1-V-W-A PS2561AL-1-V-A PS2561L1-1-L-A PS2701A-1-F3-P-A PS2801-1-F3-P-A PS2911-1-L-AX CNY17-2X017 CNY17-4X001 CNY17-4X017 CNY17F-1X007 CNY17F-2X017 CNY17F-4X001 CNY17G-1 LTV-214 LTV-702VB LTV-733S LTV-816S-TA LTV-825S TCET1113 TCET2100 4N25-X007T IL215AT ILD615-1X007 ILQ2-X007 VOS615A-2T WPPC-A11066AA WPPC-A11066AD WPPC-A11084ASS WPPC-A21068AA WPPC-D21068AD WPPC-D21068ED WPPC-D410616EA WPPC-D410616ED