Optocoupler, Phototransistor Output, SOP-4L, Long Mini-Flat Package

묘 BSi C®

DESCRIPTION

The TCLT100. series consists of a phototransistor optically coupled to a gallium arsenide infrared-emitting diode in a 4-lead SOP4L package.

APPLICATIONS

- Switchmode power supplies
- Computer peripheral interface
- Microprocessor system interface

FEATURES

- SMD low profile 4 lead package
- $\mathrm{V}_{\text {IORM }}=1050 \mathrm{~V}$
- CTR flexibility available see order information
- Special construction
- Extra low coupling capacitance
- DC input with transistor output
- Creepage distance > 8 mm
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

AGENCY APPROVALS

- UL1577, file no. E76222
- CSA (cUL) 22.2 bulletin 5A recognized file no. E-76222
- BSI: BS EN 41003, BS EN 60065 (BS 415), BS EN 60950 (BS 7002), certificate number 7081 and 7402
- DIN EN 60747-5-5 (VDE 0884)
- FIMKO: EN 60950
- CQC

Note

- See the safety standard approval list "Agency Table" for more detailed information.

ORDERING INFORMATION

Note

- Available only on tape and reel.

TCLT100. Series

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)				
PARAMETER	CONDITION	SYMBOL	VALUE	UNIT
INPUT				
Reverse voltage		V_{R}	6	V
Forward current		I_{F}	60	mA
Forward surge current	$\mathrm{t}_{\mathrm{p}} \leq 10 \mu \mathrm{~s}$	$\mathrm{I}_{\text {FSM }}$	1.5	A
Power dissipation		$\mathrm{P}_{\text {diss }}$	100	mW
Junction temperature		T_{j}	125	${ }^{\circ} \mathrm{C}$
OUTPUT				
Collector emitter voltage		$\mathrm{V}_{\text {CEO }}$	70	V
Emitter collector voltage		$\mathrm{V}_{\mathrm{ECO}}$	7	V
Collector current		I_{c}	50	mA
Collector peak current	$\mathrm{t}_{\mathrm{p}} / \mathrm{T}=0.5, \mathrm{t}_{\mathrm{p}} \leq 10 \mathrm{~ms}$	$\mathrm{I}_{\text {CM }}$	100	mA
Power dissipation		$\mathrm{P}_{\text {diss }}$	150	mW
Junction temperature		T_{j}	125	${ }^{\circ} \mathrm{C}$
COUPLER				
Total power dissipation		$\mathrm{P}_{\text {tot }}$	250	mW
Operating ambient temperature range		$\mathrm{T}_{\text {amb }}$	-55 to +100	${ }^{\circ} \mathrm{C}$
Storage temperature range		$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Soldering temperature		$\mathrm{T}_{\text {sld }}$	260	${ }^{\circ} \mathrm{C}$

Note

- Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute maximum ratings for extended periods of the time can adversely affect reliability.

PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
INPUT						
Forward voltage	$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}$	V_{F}	-	1.25	1.6	V
Junction capacitance	$\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	C_{j}	-	50	-	pF
OUTPUT						
Collector emitter voltage	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$	$\mathrm{V}_{\text {CEO }}$	70	-	-	V
Emitter collector voltage	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}$	$\mathrm{V}_{\text {ECO }}$	7	-	-	V
Collector emitter cut-off current	$\mathrm{V}_{\text {CE }}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~A}$	$\mathrm{I}_{\text {CEO }}$	-	10	100	nA
COUPLER						
Collector emitter saturation voltage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$	$\mathrm{V}_{\text {CEsat }}$	-	-	0.3	V
Cut-off frequency	$\begin{gathered} \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \\ \mathrm{R}_{\mathrm{L}}=100 \Omega \end{gathered}$	f_{c}	-	110	-	kHz
Coupling capacitance	$\mathrm{f}=1 \mathrm{MHz}$	C_{k}	-	0.3	-	pF

Note

- Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements.

PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
$\mathrm{I} / \mathrm{I}_{\mathrm{F}}$	$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	TCLT1000	CTR	50	-	600	\%
	$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	TCLT1002	CTR	63	-	125	\%
		TCLT1003	CTR	100	-	200	\%
		TCLT1004	CTR	160	-	320	\%
	$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$	TCLT1002	CTR	22	45	-	\%
		TCLT1003	CTR	34	70	-	\%
		TCLT1004	CTR	56	100	-	\%
	$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	TCLT1005	CTR	50	-	150	\%
		TCLT1006	CTR	100	-	300	\%
		TCLT1007	CTR	80	-	160	\%
		TCLT1008	CTR	130	-	260	\%
		TCLT1009	CTR	200	-	400	\%

SAFETY AND INSULATION RATINGS

PARAMETER	CONDITION	SYMBOL	VALUE	UNIT
Partial discharge test voltage - routine test	$100 \%, \mathrm{t}_{\text {test }}=1 \mathrm{~s}$	$\mathrm{~V}_{\mathrm{pd}}$	2	kV
$\begin{array}{l}\text { Partial discharge test voltage - } \\ \text { lot test (sample test) }\end{array}$	$\mathrm{t}_{\mathrm{Tr}}=60 \mathrm{~s}, \mathrm{t}_{\text {test }}=10 \mathrm{~s}$,			

Note

- According to DIN EN 60747-5-2 (VDE 0884) (see figure 2). This optocoupler is suitable for safe electrical isolation only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.

Fig. 1 - Derating Diagram

Fig. 2 - Test Pulse Diagram for Sample Test according to DIN EN 60747-5-2 (VDE 0884); IEC60747-5-5

SWITCHING CHARACTERISTICS ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Delay time	$\begin{gathered} \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \\ (\text { see figure 3) } \end{gathered}$	t_{d}	-	3	-	$\mu \mathrm{s}$
Rise time	$\begin{gathered} \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \\ \text { (see figure 3) } \end{gathered}$	t_{r}	-	3	-	$\mu \mathrm{s}$
Fall time	$\begin{gathered} \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \\ (\text { see figure } 3) \end{gathered}$	t_{f}	-	4.7	-	$\mu \mathrm{s}$
Storage time	$\begin{gathered} \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \\ (\text { see figure 3) } \end{gathered}$	$\mathrm{t}_{\text {s }}$	-	0.3	-	$\mu \mathrm{s}$
Turn-on time	$\begin{gathered} \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \\ (\text { see figure 3) } \end{gathered}$	$\mathrm{t}_{\text {on }}$	-	6	-	$\mu \mathrm{s}$
Turn-off time	$\begin{gathered} \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \\ \text { (see figure 3) } \end{gathered}$	$\mathrm{t}_{\text {off }}$	-	5	-	$\mu \mathrm{s}$
Turn-on time	$\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega,$	$\mathrm{t}_{\text {on }}$	-	9	-	$\mu \mathrm{s}$
Turn-off time	$\begin{gathered} \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \\ \text { (see figure 4) } \end{gathered}$	$\mathrm{t}_{\text {off }}$	-	10	-	$\mu \mathrm{s}$

9510804

Fig. 3 - Test Circuit, Non-Saturated Operation

Fig. 4 - Test Circuit, Saturated Operation

TYPICAL CHARACTERISTICS $\left(T_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

Fig. 6 - Total Power Dissipation vs. Ambient Temperature

Fig. 7 - Forward Current vs. Forward Voltage

Fig. 8 - Normalized Current Transfer Ratio (non-saturated) vs. Ambient Temperature

Fig. 9 - Normalized Current Transfer Ratio (saturated) vs. Ambient Temperature

Fig. 10 - Normalized Current Transfer Ratio (non-saturated) vs. Forward Current

Fig. 11 - Normalized Current Transfer Ratio (saturated) vs. Forward Current

Fig. 12 - Collector Dark Current vs. Ambient Temperature

Fig. 13 - Collector Current vs. Forward Current

Fig. 14 - Collector Current vs. Collector Emitter Voltage

Fig. 15 - Collector Emitter Saturation Voltage vs. Collector Current

Fig. 16 - Current Transfer Ratio vs. Forward Current

Fig. 17 - Turn-on/off Time vs. Collector Current

Fig. 18 - Turn-on/off Time vs. Forward Current

PACKAGE DIMENSIONS (in millimeters)

Possible footprint

technical drawings according to DIN specifications

PACKAGE MARKING (example)

TAPE AND REEL DIMENSIONS (in millimeters)

Fig. 19 - Reel Dimensions (3000 units per reel)

Fig. 20 - Tape Dimensions

HANDLING AND STORAGE CONDITIONS

ESD level: HBM class 2
Floor life: unlimited
Conditions: $\mathrm{T}_{\mathrm{amb}}<30^{\circ} \mathrm{C}, \mathrm{RH}<85 \%$
Moisture sensitivity level 1, according to J-STD-020

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Transistor Output Optocouplers category:
Click to view products by Vishay manufacturer:

Other Similar products are found below :
LTV-814S-TA LTV-824HS LTV-852S 66095-001 6N136-X017T MCT6-X007 MOC8101-X017T PS2561A-1-W-A PS2561B-1-L-A PS2561L-1-V-A MRF658 IL755-1X007 ILD74-X001 ILQ615-2X017 ILQ615-3X016 LDA102S LDA110S PS2561-1-V-W-A PS2561AL-1-V-A PS2561L1-1-L-A PS2701A-1-F3-P-A PS2801-1-F3-P-A PS2911-1-L-AX CNY17-2X017 CNY17-4X001 CNY17-4X017 CNY17F1 X 007 CNY17F-2X017 CNY17F-4X001 CNY17G-1 LTV-214 LTV-702VB LTV-733S LTV-816S-TA LTV-825S TCET1113 TCET2100 4N25-X007T IL215AT ILD615-1X007 ILQ2-X007 VOS615A-2T WPPC-A11066AA WPPC-A11066AD WPPC-A11084ASS WPPCA21068AA WPPC-D11066AA WPPC-D21068ED WPPC-D410616EA WPPC-D410616ED

