

Vishay Semiconductors

Optocoupler, Photodarlington Output, High Gain, Single/Quad Channel, Half Pitch Mini-Flat Package

DESCRIPTION

The TCMD1000, TCMD4000 consist of a photodarlington optically coupled to a gallium arsenide infrared-emitting diodes in either a 4 pin or 16 pin miniflat package.

The elements provide a fixed distance between input and output for highest safety requirements.

FEATURES

- Low profile package (half pitch)
- AC isolation test voltage 3750 V_{RMS}
- · Low coupling capacitance of typical 0.3 pF
- Low temperature coefficient of CTR
- Wide ambient temperature range
- Material categorization:
 For definitions of compliance please see www.vishav.com/doc?99912

COMPLIANT

GREEN

APPICLATIONS

- Programmable logic
- Modems
- Answering machines
- · General applications

AGENCY APPROVALS

- UL1577, file no. E76222 system code M, double protection
- CSA 22.2 bulletin 5A, double protection
- DIN EN 60747-5-5 (VDE 0884-5)
- FIMKO
- BSI

ORDERING	ORDERING INFORMATION								
Т	С	M	D	#	0	0	0	SOP-#	
			PART N	UMBER				7 mm →	
AGENCY CERTIFIED/PACKAGE					CTR (%)				
UL, cUL, FIMKO, BSI, VDE				> 600					
SOP-4	SOP-4					TCMD1000			
SOP-16, quad channel				TCMD4000					

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER TEST CONDITION SYMBOL VALUE UNIT							
INPUT							
Reverse voltage		V _R	6	V			
Forward current		I _F	60	mA			
Forward surge current	t _P ≤ 10 μs	I _{FSM}	1.5	А			
Power dissipation		P _{diss}	100	mW			
Junction temperature		Tj	125	°C			

Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT			
OUTPUT							
Collector emitter voltage		V _{CEO}	35	V			
Emitter collector voltage		V _{ECO}	7	V			
Collector current		I _C	80	mA			
Collector peak current	$t_P/T = 0.5, t_P \le 10 \text{ ms}$	Ісм	100	mA			
Power dissipation		P _{diss}	150	mW			
Junction temperature		T _j	125	°C			
COUPLER							
AC isolation test voltage (RMS)		V _{ISO} (1)	3750	V_{RMS}			
Total power dissipation		P _{tot}	250	mW			
Operating ambient temperature range		T _{amb}	- 40 to + 100	°C			
Storage temperature range	Storage temperature range		- 40 to + 125	°C			
Soldering temperature (2)		T _{sld}	260	°C			

Notes

- Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not
 implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute
 maximum ratings for extended periods of the time can adversely affect reliability.
- (1) Related to standard climate 23/50 DIN 50014.
- (2) Wave soldering three cycles are allowed. Also refer to "Assembly Instruction" (www.vishay.com/doc?80054).

ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
input							
Forward voltage	$I_F = 50 \text{ mA}$	V _F		1.25	1.6	V	
Junction capacitance	V _R = 0 V, f = 1 MHz	C _j		50		pF	
output							
Collector emitter voltage	I _C = 100 μA	V_{CEO}	35			V	
Emitter collector voltage	I _E = 100 μA	V _{ECO}	7			V	
Collector dark current	$V_{CE} = 10 \text{ V}, I_F = 0, E = 0$	I _{CEO}			100	nA	
coupler							
Collector emitter saturation voltage	$I_F = 20 \text{ mA}, I_C = 5 \text{ mA}$	V _{CEsat}			1	V	
Cut-off frequency	$I_{F} = 10 \text{ mA, } V_{CE} = 5 \text{ V,}$ $R_{L} = 100 \Omega$	f _c		10		kHz	
Coupling capacitance	f = 1 MHz	C _k		0.3		pF	

Note

Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering
evaluation. Typical values are for information only and are not part of the testing requirements.

CURRENT TRANSFER RATIO (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
I _C /I _F	$V_{CF} = 2 \text{ V}, I_{F} = 1 \text{ mA}$	TCMD1000	CTR 600 800		%		
	v _{CE} = 2 v, i _F = 1 IIIA	TCMD4000	CTR	600	800		%

SWITCHING CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Rise time	V_{CE} = 2 V, I_{C} = 10 mA, R_{L} = 100 Ω (see figure 1)	t _r		300		μs	
Turn-off time	V_{CE} = 2 V, I_{C} = 10 mA, R_{L} = 100 Ω (see figure 1)	t _{off}		250		μs	

Vishay Semiconductors

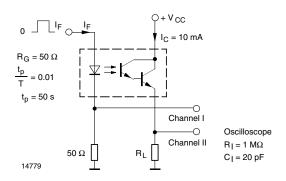


Fig. 1 - Test Circuit, Non-Saturated Operation

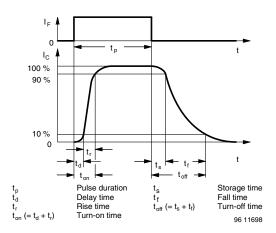


Fig. 2 - Switching Times

SAFETY AND INSULATION RATINGS						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Climatic classification	IEC 68 part 1			40/110/21		
Comparative tracking index		CTI	175		399	
V _{IOTM}			6000			V
V _{IORM}			707			V
P _{SO}					265	mW
I _{SI}					130	mA
T _{SI}					150	°C
Creepage distance			5			mm
Clearance distance			5			mm
Insulation thickness, reinforce rated	per IEC 60950 2.10.5.1		0.4			mm

Note

• As per IEC 60747-5-2, § 7.4.3.8.1, this optocoupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with the safety ratings shall be ensured by means of protective circuits.

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

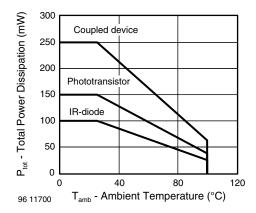


Fig. 3 - Forward Voltage vs. Ambient Temperature

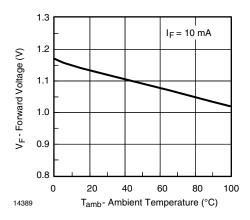


Fig. 4 - Forward Voltage vs. Ambient Temperature

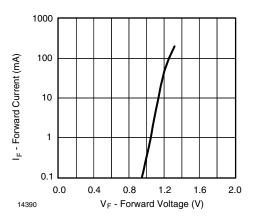


Fig. 5 - Forward Current vs. Forward Voltage

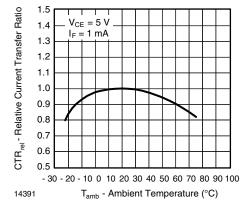


Fig. 6 - Relative Current Transfer Ratio vs. Ambient Temperature

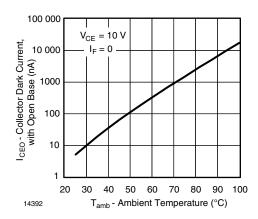


Fig. 7 - Collector Dark Current vs. Ambient Temperature

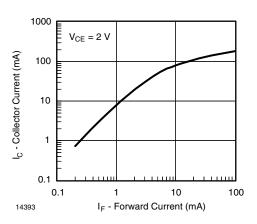


Fig. 8 - Collector Current vs. Forward Current

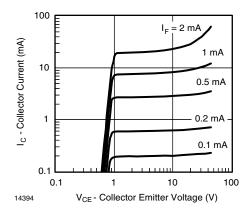


Fig. 9 - Collector Current vs. Collector Emitter Voltage

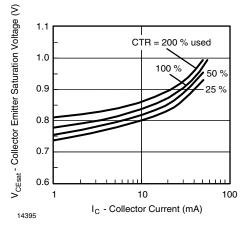


Fig. 10 - Collector Emitter Saturation Voltage vs. Collector Current

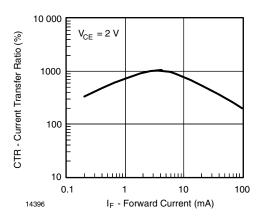
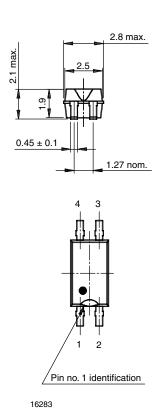
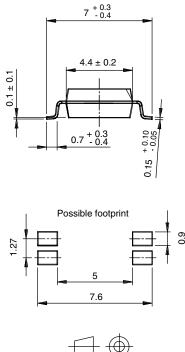
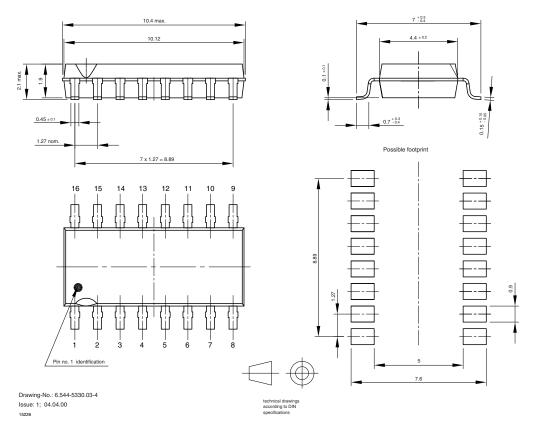




Fig. 11 - Current Transfer Ratio vs. Forward Current

PACKAGE DIMENSIONS in millimeters



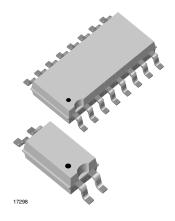
www.vishay.com

Vishay Semiconductors

PACKAGE MARKING

Footprint and Schematic Information

Vishay Semiconductors


Footprint and Schematic Information for TCMD1000, TCMD4000

The footprint and schematic symbols for the following parts can be accessed using the associated links. They are available in Eagle, Altium, KiCad, OrCAD / Allegro, Pulsonix, and PADS.

Note that the 3D models for these parts can be found on the Vishay product page.

PART NUMBER	FOOTPRINT / SCHEMATIC
TCMD1000	www.snapeda.com/parts/TCMD1000/Vishay/view-part
TCMD4000	www.snapeda.com/parts/TCMD4000/Vishay/view-part

For technical issues and product support, please contact optocoupleranswers@vishav.com.

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Transistor Output Optocouplers category:

Click to view products by Vishay manufacturer:

Other Similar products are found below:

LTV-814S-TA LTV-824HS LTV-852S 66095-001 6N136-X017T MCT6-X007 MOC8101-X017T PS2561A-1-W-A PS2561B-1-L-A PS2561L-1-V-A MRF658 IL755-1X007 ILD74-X001 ILQ615-2X017 ILQ615-3X016 LDA102S LDA110S PS2561-1-V-W-A PS2561AL-1-V-A PS2561L1-1-L-A PS2701A-1-F3-P-A PS2801-1-F3-P-A PS2911-1-L-AX CNY17-2X017 CNY17-4X001 CNY17-4X017 CNY17F-1X007 CNY17F-2X017 CNY17F-4X001 CNY17G-1 LTV-214 LTV-702VB LTV-733S LTV-816S-TA LTV-825S TCET1113 TCET2100 4N25-X007T IL215AT ILD615-1X007 ILQ2-X007 VOS615A-2T WPPC-A11066AA WPPC-A11066AD WPPC-A11084ASS WPPC-A21068AA WPPC-D21068AD WPPC-D21068ED WPPC-D410616EA WPPC-D410616ED