Triple Channel Transmissive Optical Sensor With Phototransistor Outputs for "Turn and Push" Encoding

DESCRIPTION

The TCUT1630X01 is a compact transmissive sensor that includes an infrared emitter and three phototransistor detectors, located face-to-face in a surface-mount package. The tall dome design supports an additional transistor and additional mechanical room for vertical signal encoding.

FEATURES

- Package type: surface-mount
- Detector type: phototransistor
- Dimensions (L x W x H in mm): $5.5 \times 5.85 \times 7$

- AEC-Q101 qualified
- Gap (in mm): 3
- Aperture (in mm): 0.3

RoHS COMPLANT

- Typical output current under test: $\mathrm{I}_{\mathrm{C}}=1.3 \mathrm{~mA}$
- Emitter wavelength: 950 nm halogen FREE
- Lead (Pb)-free soldering released
- Moisture sensitivity level (MSL): 1
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- Automotive optical sensors
- Accurate position sensor for encoder
- Sensor for motion, speed, and direction
- Sensor for "turn and push" encoding

PRODUCT SUMMARY						
PART NUMBER	GAP WIDTH (mm)	APERTURE WIDTH (mm)	TYPICAL OUTPUT CURRENT UNDER TEST (1) (mA)	DAYLIGHT BLOCKING FILTER INTEGRATED		
TCUT1630X01	3	0.3	1.3	No		

Note

${ }^{(1)}$ Conditions like in table basic characteristics / coupler

ORDERING INFORMATION			
ORDERING CODE	PACKAGING	VOLUME ${ }^{(1)}$	REMARKS
TCUT1630X01	Tape and reel	MOQ: $1100 \mathrm{pcs}, 1100 \mathrm{pcs} / \mathrm{reel}$	Drypack, MSL 1

Note

(1) MOQ: minimum order quantity

TCUT1630X01

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)				
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
COUPLER				
Junction temperature		T_{j}	110	${ }^{\circ} \mathrm{C}$
Ambient temperature range		$\mathrm{T}_{\text {amb }}$	-40 to +105	${ }^{\circ} \mathrm{C}$
Storage temperature range		$\mathrm{T}_{\text {stg }}$	-40 to +125	${ }^{\circ} \mathrm{C}$
Soldering temperature	In accordance with Fig. 17	$\mathrm{T}_{\text {sd }}$	260	${ }^{\circ} \mathrm{C}$
INPUT (EMITTER)				
Reverse voltage		V_{R}	5	V
Forward current	$\mathrm{T}_{\text {amb }} \leq 95^{\circ} \mathrm{C}$	I_{F}	25	mA
Forward surge current	$\mathrm{t}_{\mathrm{p}} \leq 10 \mu \mathrm{~s}$	$\mathrm{I}_{\text {FSM }}$	200	mA
Total power dissipation	$\mathrm{T}_{\text {amb }} \leq 95^{\circ} \mathrm{C}$	P_{V}	37.5	mW
OUTPUT (DETECTOR)				
Collector emitter voltage		$\mathrm{V}_{\text {CEO }}$	20	V
Emitter collector voltage		$\mathrm{V}_{\mathrm{ECO}}$	7	V
Collector current		I_{C}	20	mA
Collector dark current	$\mathrm{T}_{\text {amb }}=85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$	$\mathrm{I}_{\text {ceo }}$	3.3	$\mu \mathrm{A}$
Total power dissipation	$\mathrm{T}_{\text {amb }} \leq 95{ }^{\circ} \mathrm{C}$	PV	37.5	mW

ABSOLUTE MAXIMUM RATINGS

Fig. 1 - Power Dissipation Limit vs. Ambient Temperature

Fig. 2 - Forward Current Limit vs. Ambient Temperature

PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
COUPLER						
Collector current per channel	$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=15 \mathrm{~mA}$	I_{C}	0.45	1.3	-	mA
Collector emitter saturation voltage	$\mathrm{I}_{\mathrm{F}}=15 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=0.2 \mathrm{~mA}$	$\mathrm{V}_{\text {CEsat }}$	-	-	0.4	V
INPUT (EMITTER)						
Forward voltage	$\mathrm{I}_{\mathrm{F}}=15 \mathrm{~mA}$	V_{F}	1	1.2	1.4	V
Reverse current	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$	I_{R}	-	-	10	$\mu \mathrm{A}$
Junction capacitance	$\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	C_{j}	-	25	-	pF
OUTPUT (DETECTOR)						
Collector emitter voltage I_{C}	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$	$\mathrm{V}_{\text {CEO }}$	20	-	-	V
Emitter collector voltage	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{ECO}}$	7	-	-	V
Collector dark current	$\mathrm{V}_{\text {CE }}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~A}, \mathrm{E}=0 \mathrm{~lx}$	$\mathrm{I}_{\text {CEO }}$	-	1	100	nA
SWITCHING CHARACTERISTICS						
Rise time	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=0.7 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega \text { (see Fig. 3) } \\ & \hline \end{aligned}$	t_{r}	-	9	150	$\mu \mathrm{s}$
Fall time	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=0.7 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega \text { (see Fig. } 3 \text {) } \end{aligned}$	t_{f}	-	16	150	$\mu \mathrm{s}$

Fig. 3 - Test Circuit for t_{r} and t_{f}

Fig. 4 - Switching Times

BASIC CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

Fig. 5 - Forward Current vs. Forward Voltage

Fig. 6 - Forward Voltage vs. Ambient Temperature

Vishay Semiconductors

Fig. 7 - Collector Current vs. Forward Current

Fig. 8 - Collector Current vs. Collector Emitter Voltage

Fig. 9 - Collector Emitter Saturation Voltage vs. Ambient Temperature

Fig. 10 - Collector Current vs. Ambient Temperature

Fig. 11 - Collector Dark Current vs. Ambient Temperature

Fig. 12 - Rise / Fall Time vs. Collector Current

Fig. 13 - Relative Collector Current vs. Horizontal Displacement Horizontal Shutter (0.25 mm thickness)

Fig. 14 - Relative Collector Current vs. Vertical Displacement Vertical Shutter (0.25 mm thickness)

Fig. 15 - Application example

Vishay Semiconductors

Fig. 16 - Top View Sensor
Channel Positions and Origin of Horizontal Shutter

Fig. 17 - Top View Sensor Channel Positions and Origin of Vertical Shutter

REFLOW SOLDER PROFILE

Fig. 18 - Lead (Pb)-free Reflow Solder Profile According to J-STD-020

FLOOR LIFE

Level 1, according to JEDEC ${ }^{\circledR}$, J-STD-020. No time limit.
PACKAGE DIMENSIONS in millimeters

Not indicated tolerances $\pm 0.15 \mathrm{~mm}$

Technical drawings according to DIN specification.

Recommended Footprint

Note

- Do not connect n.c. pins to the circuit

Issue: 1; 20.06.2016

PACKAGE DIMENSIONS in millimeters

Volume/reel = 1100 pcs

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Optical Switches, Transmissive, Phototransistor Output category:
Click to view products by Vishay manufacturer:

Other Similar products are found below :
LTH-301-07 LTH-301-23 E3C-X2C E3S-LS20B4S1 E3SX2CE4 RPI-2501 RPI-576A KRA021 LTH-306-04M LTH-309-08 HOA0865100 HOA1961-055 E3F-3C4 LTH-306-01 EESX677C1JR01M SIT506F-A HOA1883-501 PT928-6B-F RPI-243 EE-SX675P-WR 1M OPB806 EE-SX1128 OPB857Z EE-SV3-B EE-SJ3-D RPI-0226 EE-SX954-W 1M EE-SX672R EE-SX670P-WR 1M EE-SX952P-W 1M LTH-301-32 EESX674PWR1M EE-SX952-W 1M RPI-0352E RPI-352C40N SEN0448 DY-ITR002 DY-ITR1100 DY-ITR9909-W2 HOA0825-001 HOA0825-003 HOA0860-N51 HOA0861-N55 HOA0861-P55 HOA0861-T55 HOA0866-P55 HOA0866-T55 HOA0867P55 HOA0867-T55 HOA0870-T51

