Subminiature Dual Channel Transmissive Optical Sensor with Phototransistor Outputs

DESCRIPTION

The TCUT1300X01 is a compact transmissive sensor that includes an infrared emitter and two phototransistor detectors, located face-to-face in a surface mount package.

FEATURES

- Package type: surface mount
- Detector type: phototransistor
- Dimensions (L x W x H in mm): $5.5 \times 4 \times 4$
- AEC-Q101 qualified
- Gap (in mm): 3
- Aperture (in mm): 0.3
- Channel distance (center to center): 0.8 mm
- Typical output current under test: $\mathrm{I}_{\mathrm{C}}=0.6 \mathrm{~mA}$
- Emitter wavelength: 950 nm
- Lead (Pb)-free soldering released
- Moisture sensitivity level (MSL): 1
- Compliant to RoHS Directive 2002/95/EC and in accordance to WEEE 2002/96/EC

Note

** Please see document "Vishay Material Category Policy": www.vishay.com/doc?99902

APPLICATIONS

- Automotive optical sensors
- Accurate position sensor for encoder
- Sensor for motion, speed and direction

PRODUCT SUMMARY						
PART NUMBER	GAP WIDTH (mm)	APERTURE WIDTH (mm)	TYPICAL OUTPUT CURRENT UNDER TEST (1) $(\mathbf{m A)}$	DAYLIGHT BLOCKING FILTER INTEGRATED		
TCUT1300X01	3	0.3	0.6	No		

Note

- Conditions like in table basic characteristics/coupler

ORDERING INFORMATION			
ORDERING CODE	PACKAGING	VOLUME ${ }^{(1)}$	REMARKS
TCUT1300X01	Tape and reel	MOQ: $2000 \mathrm{pcs}, 2000 \mathrm{pcs} / \mathrm{reel}$	Drypack, MSL 1

Note

- MOQ: minimum order quantity

TCUT1300X01

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)				
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
COUPLER				
Total power dissipation	$\mathrm{T}_{\text {amb }} \leq 95^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tot }}$	37.5	mW
Junction temperature		T_{j}	110	${ }^{\circ} \mathrm{C}$
Ambient temperature range		$\mathrm{T}_{\text {amb }}$	-40 to +105	${ }^{\circ} \mathrm{C}$
Storage temperature range		$\mathrm{T}_{\text {stg }}$	-40 to +125	${ }^{\circ} \mathrm{C}$
Soldering temperature	In accordance with fig. 16	$\mathrm{T}_{\text {sd }}$	260	${ }^{\circ} \mathrm{C}$
INPUT (EMITTER)				
Reverse voltage		V_{R}	5	V
Forward current	$\mathrm{T}_{\text {amb }} \leq 95^{\circ} \mathrm{C}$	I_{F}	25	mA
Forward surge current	$\mathrm{t}_{\mathrm{p}} \leq 10 \mu \mathrm{~s}$	$\mathrm{I}_{\text {FSM }}$	200	mA
Power dissipation	$\mathrm{T}_{\text {amb }} \leq 95^{\circ} \mathrm{C}$	P_{V}	37.5	mW
OUTPUT (DETECTOR)				
Collector emitter voltage		$\mathrm{V}_{\text {CEO }}$	20	V
Emitter collector voltage		$\mathrm{V}_{\mathrm{ECO}}$	7	V
Collector current		I_{C}	20	mA
Collector dark current	$\mathrm{T}_{\mathrm{amb}}=85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$	$\mathrm{I}_{\text {CEO }}$	3.3	$\mu \mathrm{A}$

ABSOLUTE MAXIMUM RATINGS

Fig. 1 - Power Dissipation Limit vs. Ambient Temperature

Fig. 2 - Forward Current Limit vs. Ambient Temperature

TCUT1300X01

PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
COUPLER						
Collector current per channel	$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=15 \mathrm{~mA}$	I_{C}	300	600		$\mu \mathrm{A}$
Collector emitter saturation voltage	$\mathrm{I}_{\mathrm{F}}=15 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=0.05 \mathrm{~mA}$	$\mathrm{V}_{\text {CEsat }}$			0.4	V
INPUT (EMITTER)						
Forward voltage	$\mathrm{I}_{\mathrm{F}}=15 \mathrm{~mA}$	V_{F}	1	1.2	1.4	V
Reverse current	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$	I_{R}			10	$\mu \mathrm{A}$
Junction capacitance	$\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	C_{j}		25		pF
OUTPUT (DETECTOR)						
Collector emitter voltage I_{C}	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$	$\mathrm{V}_{\text {CEO }}$	20			V
Emitter collector voltage	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}$	$\mathrm{V}_{\text {ECO }}$	7			V
Collector dark current	$\mathrm{V}_{\mathrm{CE}}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~A}, \mathrm{E}=0 \mathrm{~lx}$	$\mathrm{I}_{\text {CEO }}$		1	100	nA
SWITCHING CHARACTERISTICS						
Rise time	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=0.3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega \text { (see fig. 3) } \\ & \hline \end{aligned}$	tr_{r}		20	150	$\mu \mathrm{s}$
Fall time	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=0.3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega \text { (see fig. 3) } \end{aligned}$	$t_{\text {f }}$		30	150	$\mu \mathrm{s}$

Fig. 3 - Test Circuit for t_{r} and t_{f}

Fig. 4 - Switching Times

BASIC CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

Fig. 5 - Forward Current vs. Forward Voltage

Fig. 6 - Forward Voltage vs. Ambient Temperature

Vishay Semiconductors

Fig. 7 - Collector Current vs. Forward Current

Fig. 8 - Collector Current vs. Collector Emitter Voltage

Fig. 9 - Collector Emitter Saturation Voltage vs. Ambient Temperature

Fig. 10 - Collector Current vs. Ambient Temperature

Fig. 11 - Collector Dark Current vs. Ambient Temperature

Fig. 12 - Relative Collector Current vs. Horizontal Displacement

Fig. 13 - Relative Collector Current vs. Vertical Displacement

Fig. 14 - Rise/Fall Time vs. Collector Current

Fig. 15 - Application example

REFLOW SOLDER PROFILE

Fig. 16 - Lead (Pb)-free Reflow Solder Profile acc. J-STD-020

FLOOR LIFE

Level 1, acc. JEDEC, J-STD-020. No time limit.

RELIABILITY TESTS IN REFERENCE TO AEC-Q101 RELEASE

TEST	CONDITION	DURATION	LOT SIZE - REJECTS
High temperature storage	$\mathrm{T}_{\text {stg (max.) }}=100^{\circ} \mathrm{C}$	1000 h	$3 \times 50 \mathrm{pcs}-0 \mathrm{pcs}$
Low temperature storage	$\mathrm{T}_{\text {stg }(\min .)}=-40^{\circ} \mathrm{C}$	1000 h	$3 \times 50 \mathrm{pcs}-0 \mathrm{pcs}$
Temperature cycling	$-40^{\circ} \mathrm{C} /+100^{\circ} \mathrm{C}$	$1000 \times$	$3 \times 77 \mathrm{pcs}-0 \mathrm{pcs}$
H3TRB	$85^{\circ} \mathrm{C} / 85 \% \mathrm{RH}$, emitters: $\mathrm{V}_{\mathrm{R}}=4 \mathrm{~V}$, detectors: $\mathrm{V}_{\mathrm{CEO}}=5 \mathrm{~V}$	1000 h	$3 \times 77 \mathrm{pcs}-0 \mathrm{pcs}$
Intermittent operational life	Emitters: $\mathrm{I}_{\mathrm{F}}=80 \mathrm{~mA} \mathrm{DC}, \mathrm{detectors:} \mathrm{~V}_{\mathrm{CE}}=16 \mathrm{~V}$, duty cycle: 2 min on, 2 min off, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	1000 h $(15000 \mathrm{cycles})$	$3 \times 77 \mathrm{pcs}-0 \mathrm{pcs}$

RELIABILITY TESTS IN REFERENCE TO ENHANCED TEMPERATURE RELEASE ACC. AEC-Q101

TEST	CONDITION	DURATION	LOT SIZE - REJECTS
High temperature storage	$\mathrm{T}_{\text {stg(max. })}=125^{\circ} \mathrm{C}$	1000 h	1×50 pcs - 0 pcs
Temperature cycling	$-40^{\circ} \mathrm{C} /+150{ }^{\circ} \mathrm{C}$	1000 x	1×77 pcs - 0 pcs
Power temperature cycle	$\begin{gathered} -25^{\circ} \mathrm{C} /+85^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=16 \mathrm{~V}, \\ 2 \mathrm{~min} . \text { on, } 2 \mathrm{~min} . \text { off } \end{gathered}$	$\begin{gathered} 1000 \mathrm{~h} \\ (15000 \text { cycles }) \end{gathered}$	1×77 pcs - 0 pcs

PACKAGE DIMENSIONS in millimeters

PACKAGE DIMENSIONS in millimeters

Volume/reel = 2000 pcs

Drawing-No.: 9.800-5092.01-4
Issue: 1; 14.05.07
20611

Packaging and Ordering Information

PART NUMBER	MOQ ${ }^{(1)}$	PCS PER TUBE	TUBE SPEC. (FIGURE)	CONSTITUENTS (FORMS)
CNY70	4000	80	1	28
TCPT1300X01	2000	Reel	(2)	29
TCRT1000	1000	Bulk	-	26
TCRT1010	1000	Bulk	-	26
TCRT5000	4500	50	2	27
TCRT5000L	2400	48	3	27
TCST1030	5200	65	5	24
TCST1030L	2600	65	6	24
TCST1103	1020	85	4	24
TCST1202	1020	85	4	24
TCST1230	1020	60	7	24
TCST1300	1020	85	4	24
TCST2103	1020	85	4	24
TCST2202	1020	85	4	24
TCST2300	4860	85	4	24
TCST5250	2000	30	8	24
TCUT1300X01	2500	Rulk	29	29
TCZT8020-PAER			-	22

Notes

(1) MOQ: minimum order quantity
(2) Please refer to datasheets

TUBE SPECIFICATION FIGURES

With rubber stopper
Tolerance: $\pm 0.5 \mathrm{~mm}$
Length: $575 \pm 1 \mathrm{~mm}$

Drawing-No: 9.700-5097.01-4
Issue: 1; 25.02 .00

Fig. 1

Packaging and Ordering Information

Vishay Semiconductors Packaging and Ordering Information

Drawing refers to following types: TCRT 5000
15210
Fig. 2

With stopper pins
Tolerance: $\pm 0.5 \mathrm{~mm}$ Length: $575 \pm 1 \mathrm{~mm}$

Drawing-No.: 9.700-5178.01-4

Issue: 1; 25.02 .00
15201

Fig. 3

Drawing-No:: 9.700-5100.01-4
Issue: 1; 25.02.00

> With rubber stopper
> Tolerance: $\pm 0.5 \mathrm{~mm}$
> Length: $575 \pm 1 \mathrm{~mm}$

Fig. 4

With stopper pins
Tolerance: $\pm 0.5 \mathrm{~mm}$ Length: 575 +1 mm

Drawing-No:: 9.700-5140.01-4 Issue: 1; 25.02 .00

Fig. 5

Packaging and Ordering Information

Vishay Semiconductors Packaging and Ordering Information

Drawing-No:: 9.700-5205.01-4
Issue: 1; 25.02 .00

Fig. 6

Fig. 7

[^0]Fig. 8

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Optical Switches, Transmissive, Phototransistor Output category:
Click to view products by Vishay manufacturer:

Other Similar products are found below :
LTH-301-07 LTH-301-23 E3C-X2C E3S-LS20B4S1 E3SX2CE4 RPI-2501 RPI-576A KRA021 LTH-306-04M LTH-309-08 HOA0865100 HOA1961-055 E3F-3C4 LTH-306-01 EESX677C1JR01M SIT506F-A HOA1883-501 PT928-6B-F RPI-243 EE-SX675P-WR 1M OPB806 EE-SX1128 OPB857Z EE-SV3-B EE-SJ3-D RPI-0226 EE-SX954-W 1M EE-SX672R EE-SX670P-WR 1M EE-SX952P-W 1M LTH-301-32 EESX674PWR1M EE-SX952-W 1M RPI-0352E RPI-352C40N SEN0448 DY-ITR002 DY-ITR1100 DY-ITR9909-W2 HOA0825-001 HOA0825-003 HOA0860-N51 HOA0861-N55 HOA0861-P55 HOA0861-T55 HOA0866-P55 HOA0866-T55 HOA0867P55 HOA0867-T55 HOA0870-T51

[^0]: With stopper pins
 Tolerance: $\pm 0.5 \mathrm{~mm}$
 Length: $450 \pm 1 \mathrm{~mm}$
 All dimensions in mm

