

DESCRIPTION

at high ambient temperatures.

appearance in application.

are available for color red.

Product group: LED

Product series: power

• Angle of half intensity: ± 45°

Package: TELUX

The TELUX series is a clear, non diffused LED for

It is designed in an industry standard 7.62 mm square

The supreme heat dissipation of TELUX allows applications

All packing units are binned for luminous flux, forward

voltage, and color to achieve the most homogenous light

SAE and ECE color requirements for automobile application

PRODUCT GROUP AND PACKAGE DATA

applications where supreme luminous flux is required.

package utilizing highly developed AllnGaP technology.

TLWR8900, TLWR8901, TLWR8902, TLWY8900

Vishay Semiconductors

TELUX LED

FEATURES

- High luminous flux
- Supreme heat dissipation: R_{thJP} is 90 K/W
- High operating temperature: $T_{amb} = -40 \ ^{\circ}C \ to +110 \ ^{\circ}C$
- Meets SAE and ECE color requirements for the automobile industry for color red
- Packed in tubes for automatic insertion
- Luminous flux, forward voltage, and color categorized for each tube
- FREE Small mechanical tolerances allow precise **GREEN** usage of external reflectors or lightguides (5-2008)
- Compatible with wave solder processes according to CECC 00802
- ESD-withstand voltage: up to 2 kV according to JESD22-A114-B
- AEC-Q101 gualified
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

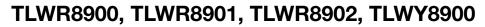
- Exterior lighting
- Dashboard illumination
- Tail-, stop-, and turn signals of motor vehicles
- Replaces small incandescent lamps
- · Traffic signals and signs

PARTS TABLE														
PART	COLOR			at I _F (mA)	WAVELENGTH (nm)		at I _F (mA)	FORWARD VOLTAGE (V)		at I _F (mA)	TECHNOLOGY			
		MIN.	TYP.	MAX.	(IIIA)	MIN.	IIN. TYP.	MAX.	(111-7)	MIN.	TYP.	MAX.	(117)	
TLWR8900	Red	2000	3700	-	70	611	616	634	70	1.83	2.2	2.67	70	AllnGaP on GaAs
TLWR8901	Red	2000	3700	4800	70	611	616	634	70	1.83	2.2	2.67	70	AllnGaP on GaAs
TLWR8902	Red	3000	3900	4800	70	611	616	634	70	1.95	2.2	2.67	70	AllnGaP on GaAs
TLWY8900	Yellow	2000	3200	-	70	585	591	597	70	1.83	2.1	2.67	70	AllnGaP on GaAs

ABSOLUTE MAXIMUM RATINGS (Tamb = 25 °C, unless otherwise specified) TLWR8900, TLWR8901, TLWR8902, TLWY8900

12Wn0500, 12Wn0501, 12Wn0502, 12W10500						
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT		
Reverse voltage (1)	I _R = 100 μA	V _R	10	V		
DC forward current	T _{amb} ≤ 85 °C	I _F	70	mA		
Surge forward current	t _p ≤ 10 μs	I _{FSM}	1	A		
Power dissipation		Pv	187	mW		
Junction temperature		Тj	125	°C		
Operating temperature range		T _{amb}	-40 to +110	°C		
Storage temperature range		T _{stg}	-55 to +110	°C		
Soldering temperature	t ≤ 5 s, 1.5 mm from body preheat temperature 100 °C / 30 s	T _{sd}	260	°C		
Thermal resistance junction-to-ambient	With cathode heatsink of 70 mm ²	R _{thJA}	200	K/W		
Thermal resistance junction-to-pin		R _{thJP}	90	K/W		

Note


⁽¹⁾ Driving the LED in reverse direction is suitable for a short term application

RoHS COMPLIANT HALOGEN

e

1

www.vishay.com

Vishay Semiconductors

OPTICAL AND ELECTRICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified) TLWR8900, TLWR8901, TLWR8902, RED								
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT	
	I _F = 70 mA, R _{thJA} = 200 K/W	TLWR8900	φv	2000	3700	-	mlm	
Total flux	$I_{F} = 70 \text{ mA}, \text{ R}_{thJA} = 200 \text{ K/W}$	TLWR8901	φv	2000	3700	4800	mlm	
	$I_{F} = 70 \text{ mA}, \text{ R}_{thJA} = 200 \text{ K/W}$	TLWR8902	φv	3000	3900	4800	mlm	
Luminous intensity/total flux			I _V /φ _V	-	0.7	-	mcd/mlm	
Dominant wavelength			λ _d	611	616	634	nm	
Peak wavelength			λρ	-	624	-	nm	
Angle of half intensity			φ	-	± 45	-	deg	
Total included angle	90 % of total flux captured		Φ0.9 V	-	100	-	deg	
	$I_F = 70 \text{ mA}, R_{thJA} = 200 \text{ K/W}$	TLWR8900	V _F	1.83	2.2	2.67	V	
Forward voltage	$I_F = 70 \text{ mA}, \text{ R}_{thJA} = 200 \text{ K/W}$	TLWR8901	V _F	1.83	2.2	2.67	V	
	$I_F = 70 \text{ mA}, \text{ R}_{thJA} = 200 \text{ K/W}$	TLWR8902	V _F	1.95	2.2	2.67	V	
Reverse voltage	I _R = 10 μA		V _R	10	20	-	V	
Junction capacitance	V _R = 0 V, f = 1 MHz		Cj	-	17	-	pF	

OPTICAL AND ELECTRICAL CHARACTERISTICS ($T_{amb} = 25 \text{ °C}$, unless otherwise specified) **TLWY8900, YELLOW**

PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Total flux	$I_{\rm F}$ = 70 mA, $R_{\rm thJA}$ = 200 K/W	φv	2000	3200	-	mlm
Luminous intensity/total flux	$I_F = 70$ mA, $R_{thJA} = 200$ K/W	Ι _V /φ _V	-	0.7	-	mcd/mlm
Dominant wavelength	$I_{\rm F}$ = 70 mA, $R_{\rm thJA}$ = 200 K/W	λ_d	585	591	597	nm
Peak wavelength	$I_{\rm F}$ = 70 mA, $R_{\rm thJA}$ = 200 K/W	λρ	-	594	-	nm
Angle of half intensity	$I_{F} = 70 \text{ mA}, \text{ R}_{thJA} = 200 \text{ K/W}$	φ	-	± 45	-	deg
Total included angle	90 % of total flux captured	Φ0.9 V	-	100	-	deg
Forward voltage	$I_{\rm F}$ = 70 mA, $R_{\rm thJA}$ = 200 K/W	V _F	1.83	2.1	2.67	V
Reverse voltage	I _R = 10 μA	V _R	10	15	-	V
Junction capacitance	$V_R = 0 V$, f = 1 MHz	Cj	-	17	-	pF

LUMINOUS FLUX CLASSIFICATION						
GROUP	LUMINOUS FLUX (mlm)					
GNOUP	MIN.	MAX.				
D	2000	3000				
E	2500	3600				
F	3000	4200				
G	3500	4800				
Н	4000	6100				
I	5000	7300				
K	6000	9700				
L	7000	12 200				

Note

 Luminous flux is tested at a current pulse duration of 25 ms and an accuracy of ± 11 %.

These type numbers represent the order groups which include only a few brightness groups. Only one group will be shipped on each tube (there will be no mixing of two groups on each tube). In order to ensure availability, single brightness groups will not be orderable.

In a similar manner for colors where wavelength groups are measured and binned, single wavelength groups will be shipped in any one tube.

In order to ensure availability, single wavelength groups will not be orderable

2

COLOR CLASSIFICATION						
	l	DOM. WAVEI	LENGTH (nm)		
GROUP	YEL	LOW	RED			
	MIN.	MAX.	MIN.	MAX.		
0	585	588				
1	587	591	611	618		
2	589	594	614	622		
3	592	597	616	634		

Note

 Wavelengths are tested at a current pulse duration of 25 ms and an accuracy of ± 1 nm **Vishay Semiconductors**

FORWARD VOLTAGE CLASSIFICATION						
	FORWARD VOLTAGE (V)					
GROUP	MIN.	MAX.				
Y	1.83	2.07				
Z	1.95	2.19				
0	2.07	2.31				
1	2.19	2.43				
2	2.31	2.55				
3	2.43	2.67				

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

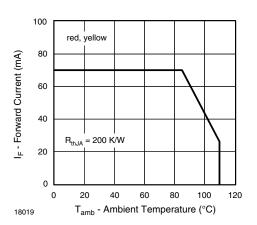


Fig. 1 - Forward Current vs. Ambient Temperature

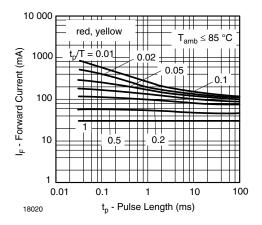


Fig. 2 - Forward Current vs. Pulse Length

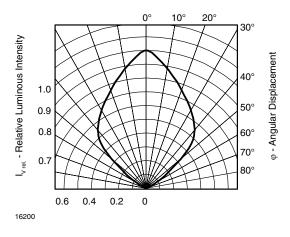


Fig. 3 - Relative Luminous Intensity vs. Angular Displacement

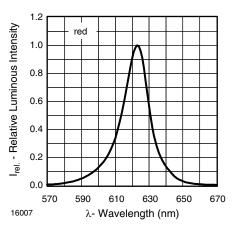


Fig. 4 - Relative Intensity vs. Wavelength

Vishay Semiconductors

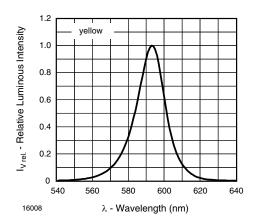


Fig. 5 - Relative Intensity vs. Wavelength

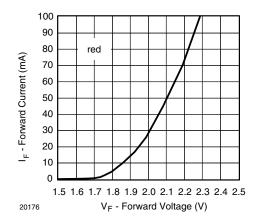


Fig. 6 - Forward Current vs. Forward Voltage

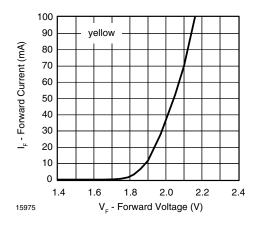


Fig. 7 - Forward Current vs. Forward Voltage

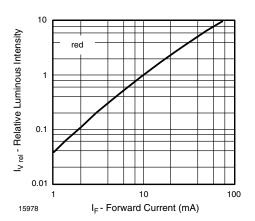


Fig. 8 - Relative Luminous Flux vs. Forward Current

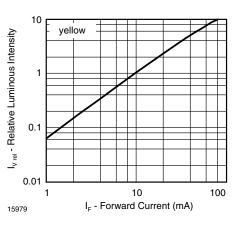


Fig. 9 - Relative Luminous Flux vs. Forward Current

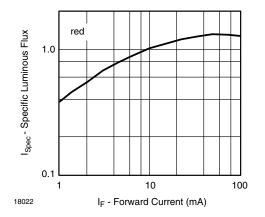


Fig. 10 - Specific Luminous Flux vs. Forward Current

Rev. 2.5, 18-Apr-17

4

Document Number: 83212

For technical questions, contact: <u>LED@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Semiconductors

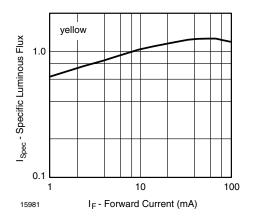


Fig. 11 - Specific Luminous Flux vs. Forward Current

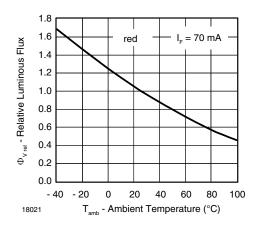


Fig. 12 - Relative Luminous Flux vs. Ambient Temperature

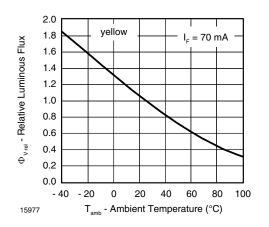


Fig. 13 - Relative Luminous Flux vs. Ambient Temperature

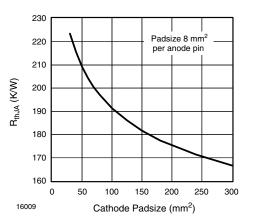
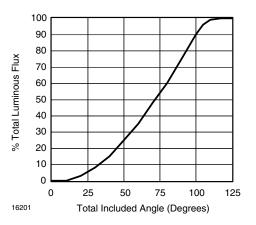
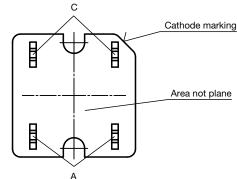
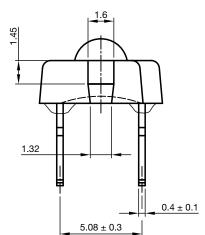


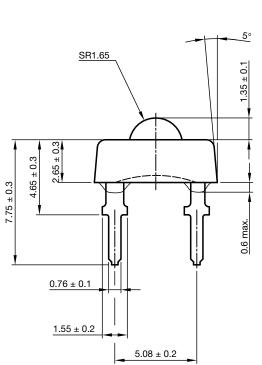
Fig. 14 - Thermal Resistance Junction Ambient vs. Cathode Padsize




Fig. 15 - Percentage Total Luminous Flux vs. Total Included Angle for 90° Emission Angle


5

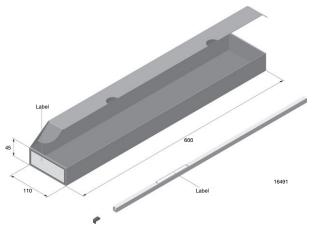
Vishay Semiconductors


PACKAGE DIMENSIONS in millimeters

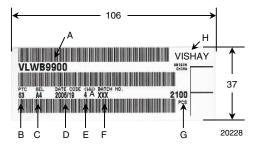
 7.62 ± 0.3

6.55

technical drawings according to DIN specifications

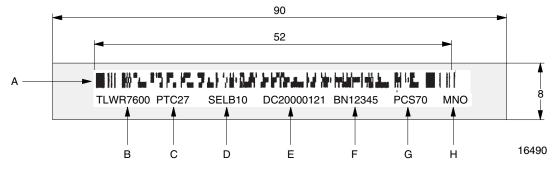

 7.62 ± 0.3

For technical questions, contact: <u>LED@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>



Vishay Semiconductors

FAN FOLD BOX DIMENSIONS in millimeters



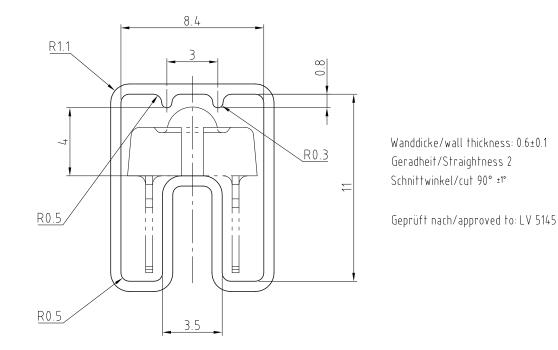
LABEL OF FAN FOLD BOX (example)

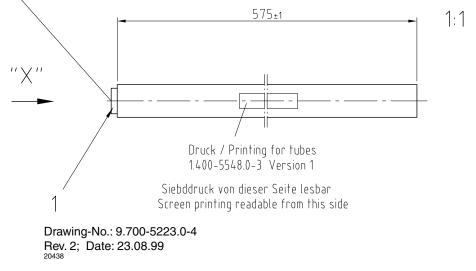
- A. Type of component
- B. Manufacturing plant
- C. SEL selection code (bin): e.g.: A = code for luminous intensity group 4 = code for color group
- D. Date code year / week
- E. Day code (e.g. 4: Thursday, A: early shift)
- F. Batch: no.
- G. Total quantity
- H. Company code

EXAMPLE FOR TELUX TUBE LABEL DIMENSIONS in millimeters

- A. Bar code
- B. Type of component
- C. Manufacturing plant
- D. SEL selection code (bin):
 - digit 1 code for luminous flux group digit 2 - code for dominant wavelength group
 - digit 3 code for forward voltage group
- E. Date code
- F. Batch: no.
- G. Total quantity
- H. Company code

Rev. 2.5, 18-Apr-17


7


Vishay Semiconductors

TUBE WITH BAR CODE LABEL DIMENSIONS in millimeters

"X" 90° gedreht / 90° turned

Bestücken mit 1 Stopper / equip with 1 stopper

Drawing Proportions not Scaled

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Standard LEDs - Through Hole category:

Click to view products by Vishay manufacturer:

Other Similar products are found below :

LTL-10254W LTL-1214A LTL-3251A LTL-4262N LTL-433P LTL-5234 LTL87HTBK LTW-87HD4B HLMP-EL30-PS0DD 1L0532V23G0TD001 NSPW500CS NTE30036 NTE30044 NTE30059 NTE3020 LD CQDP-1U3U-W5-1-K LO566UHR3-70G-A3 LP379PPG1C0G0300001 SLX-LX3044GD SLX-LX3044ID SLX-LX3044YD 1.90690.3330000 SSS-LX4673ID-410B 1L0532Y24I0TD001 264-7SYGD/S530-E2 HLMP1385 LTL-10224W LTL-1224A LTL-1234A LTL-2251AT LTL-307YE-012 LTL-403HR LTL-4222 LU7-E-B 4380H1 TLHY44K1L2 HLMP-3962-F0002 HLMP-GG15-R0000 323-2SURD/S530-A3 L53SRC/E-Z L-7679C1ZGC 4302T1-5V 4306D23 4363D1/5 WP1503SRC/J4 WP153GDT WP153YDT WP1543SGC WP1543SURC WP53MGD