TNPU e3

Ultra Precision Thin Film Chip Resistors

TNPU e3 ultra precision thin film flat chip resistors combine the proven reliability of TNPW e3 products with a most advanced level of precision and stability. This unique combination makes the product perfectly suited for all applications with outstanding requirements towards size, reliable precision and stability.

FEATURES

- Low temperature coefficients and tight tolerances
- Sulfur resistance verified according to ASTM B 809
- Superior moisture resistivity ($85^{\circ} \mathrm{C}$; $85 \% \mathrm{RH}$)
- Excellent overall stability at different environmental conditions, e.g. ≤ 0.05 \% (1000 h rated power at $70^{\circ} \mathrm{C}$)
- AEC-Q200 qualified
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- Automotive
- Industrial equipment
- Test and measuring equipment
- Medical equipment
- Telecommunication
- Instrumentation

TECHNICAL SPECIFICATIONS

DESCRIPTION	TNPU0402 e3	TNPU0603 e3	TNPU0805 e3	TNPU1206 e3
Imperial size	0402	0603	0805	1206
Metric size code	RR1005M	RR1608M	RR2012M	RR3216M
Resistance range	100Ω to $100 \mathrm{k} \Omega$	100Ω to $100 \mathrm{k} \Omega$	100Ω to $332 \mathrm{k} \Omega$	100Ω to $511 \mathrm{k} \Omega$
Resistance tolerance	± 0.1 \%; ± 0.05 \%	± 0.1 \%; $\pm 0.05 \% ; \pm 0.02$ \%		
Temperature coefficient	$\pm 10 \mathrm{ppm} / \mathrm{K} ; \pm 5 \mathrm{ppm} / \mathrm{K}$	$\pm 10 \mathrm{ppm} / \mathrm{K} ; \pm 5 \mathrm{ppm} / \mathrm{K} ; \pm 2 \mathrm{ppm} / \mathrm{K}$		
Rated dissipation, $\mathrm{P}_{70}{ }^{(1)}$	0.063 W	0.1 W	0.125 W	0.25 W
Operating voltage, $U_{\text {max }} . \mathrm{AC}_{\text {RMS }} / \mathrm{DC}$	50 V	75 V	150 V	200 V
Permissible film temperature, $\vartheta_{\mathrm{F} \text { max. }}{ }^{(1)}$	$125^{\circ} \mathrm{C}$			
Operating temperature range	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$			
Internal thermal resistance ${ }^{(1)}$	90 K/W	63 K/W	38 K/W	$32 \mathrm{~K} / \mathrm{W}$
Permissible voltage against ambient (insulation):				
$1 \mathrm{~min} ; U_{\text {ins }}$	75 V	100 V	200 V	300 V
$\mathrm{FIT}_{\text {observed }}$	$\leq 0.1 \times 10^{-9} / \mathrm{h}$			

Note
(1) Please refer to APPLICATION INFORMATION, see below

APPLICATION INFORMATION

When the resistor dissipates power, a temperature rise above the ambient temperature occurs, dependent on the thermal resistance of the assembled resistor together with the printed circuit board. The rated dissipation applies only if the permitted film temperature is not exceeded.
Please consider the application note "Thermal Management in Surface-Mounted Resistor Applications" (www.vishay.com/doc?28844) for information on the general nature of thermal resistance.
These resistors do not feature a limited lifetime when operated within the permissible limits. However, resistance value drift increasing over operating time may result in exceeding a limit acceptable to the specific application, thereby establishing a functional lifetime.

TNPU e3

MAXIMUM RESISTANCE CHANGE AT RATED DISSIPATION					
OPERATION MODE					STANDARD
Rated dissipation, P_{70}	TNPU0402 e3	0.063 W			
	TNPU0603 e3	0.100 W			
		TNPU0805 e3			

TEMPERATURE COEFFICIENT AND RESISTANCE RANGE

TNPU e3

PACKAGING						
TYPE / SIZE	CODE	QUANTITY	PACKAGING STYLE	WIDTH	PITCH	PACKAGING DIMENSIONS
TNPU0402 e3	EP1 = EP	1000	Paper tape according IEC 60286-3, type 1 a	8 mm	2 mm	$\varnothing 180 \mathrm{~mm} /{ }^{\text {7 }}$
	ET2 = El	5000				
TNPU0603 e3 TNPU0805 e3	E 52 = EN	1000			4 mm	
TNPU1206 e3	$\mathrm{ET} 1=\mathrm{EA}$	5000				

PART NUMBER AND PRODUCT DESCRIPTION

Part Number: TNPU12061K32AZEA00

Product Description: TNPU1206 1K32 0.05 \% T-16 ET1 e3

Note

- Products can be ordered using either the PART NUMBER or the PRODUCT DESCRIPTION

DESCRIPTION

Production is strictly controlled and follows an extensive set of instructions established for reproducibility. A homogeneous film of metal alloy is deposited on a high grade ceramic substrate $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ and conditioned to achieve the desired temperature coefficient. Specially designed inner contacts are deposited on both sides. A special laser is used to achieve the target value by smoothly fine trimming the resistive layer without damaging the ceramics. A further conditioning is applied in order to stabilize the trimming result. The resistor elements are covered by a protective coating designed for electrical, mechanical and climatic protection. The terminations receive a final pure matte tin on nickel plating. The result of the determined production is verified by an extensive testing procedure on 100% of the individual chip resistors. Only accepted products are laid directly into the tape in accordance with IEC 60286-3 Type 1a ${ }^{(1)}$.

ASSEMBLY

The resistors are suitable for processing on automatic SMD assembly systems. They are suitable for automatic soldering using wave, reflow or vapor phase as shown in IEC 61760-1 ${ }^{(1)}$. The encapsulation is resistant to all cleaning solvents commonly used in the electronics industry, including alcohols, esters and aqueous solutions. The suitability of conformal coatings, potting compounds and their processes, if applied, shall be qualified by appropriate means to ensure the long-term stability of the whole system.

The resistors are RoHS compliant, the pure matte tin plating provides compatibility with lead (Pb)-free and lead-containing soldering processes. The immunity of the plating against tin whisker growth has been proven under extensive testing.

MATERIALS

Vishay acknowledges the following systems for the regulation of hazardous substances:

- IEC 62474, Material Declaration for Products of and for the Electrotechnical Industry, with the list of declarable substances given therein ${ }^{(2)}$
- The Global Automotive Declarable Substance List (GADSL) ${ }^{(3)}$
- The REACH regulation (1907/2006/EC) and the related list of substances with very high concern (SVHC) ${ }^{(4)}$ for its supply chain

The products do not contain any of the banned substances as per IEC 62474, GADSL, or the SVHC list, see www.vishay.com/how/leadfree.

Hence the products fully comply with the following directives:

- 2000/53/EC End-of-Life Vehicle Directive (ELV) and Annex II (ELV II)
- 2011/65/EU Restriction of the Use of Hazardous Substances Directive (RoHS) with amendment 2015/863/EU
- 2012/19/EU Waste Electrical and Electronic Equipment Directive (WEEE)
Vishay pursues the elimination of conflict minerals from its supply chain, see the Conflict Minerals Policy at www.vishay.com/doc? 49037.

RELATED PRODUCTS

For products with precision specification see the datasheet:

- TNPW e3 - High Stability Thin Film Flat Chip Resistors (www.vishay.com/doc?28758)

Notes

${ }^{(1)}$ The quoted IEC standards are also released as EN standards with the same number and identical contents
(2) The IEC 62474 list of declarable substances is maintained in a dedicated database, which is available at http://std.iec.ch/iec62474
(3) The Global Automotive Declarable Substance List (GADSL) is maintained by the American Chemistry Council and available at www.gadsl.org
(4) The SVHC list is maintained by the European Chemical Agency (ECHA) and available at http://echa.europa.eu/candidate-list-table

TNPU e3

FUNCTIONAL PERFORMANCE

TEST AND REQUIREMENTS

All tests are carried out in accordance with the following specifications:
EN 60115-1, generic specification
EN 60115-8 (successor of EN 140400),
sectional specification
EN 140401-801, detail specification
IEC 60068-2-xx, test methods
The parameters stated in the Test Procedures and Requirements table are based on the required tests and permitted limits of EN 140401-801. The table presents only the most important tests, for the full test schedule refer to the documents listed above. However, some additional tests and a number of improvements against those minimum requirements have been included.
The testing also covers most of the requirements specified by EIA / ECA-703 and JIS-C-5201-1.

The tests are carried out under standard atmospheric conditions in accordance with IEC 60068-1, 4.3, whereupon the following values are applied:
Temperature: $15^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$
Relative humidity: 25 \% to 75 \%
Air pressure: 86 kPa to 106 kPa (860 mbar to 1060 mbar) A climatic category LCT / UCT / 56 is applied, defined by the lower category temperature (LCT), the upper category temperature (UCT), and the duration of exposure in the damp heat, steady state test (56 days).
The components are mounted for testing on printed circuit boards in accordance with EN 60115-8, 2.4.2, unless otherwise specified.

EN 60115-1 CLAUSE	$\begin{aligned} & \text { IEC 60068-2 }{ }^{(1)} \\ & \text { TEST METHOD } \end{aligned}$	TEST	PROCEDURE	REQUIREMENTS PERMISSIBLE CHANGE $(\delta \boldsymbol{R})$
			Stability for product types:	
			TNPU0402 e3	100Ω to $100 \mathrm{k} \Omega$
			TNPU0603 e3	100Ω to $100 \mathrm{k} \Omega$
			TNPU0805 e3	100Ω to $332 \mathrm{k} \Omega$
			TNPU1206 e3	100Ω to $511 \mathrm{k} \Omega$
4.5	-	Resistance		± 0.1 \%; ± 0.05 \%; ± 0.02 \%
4.8	-	Temperature coefficient	$\begin{aligned} & \text { At }(20 /-55 / 20)^{\circ} \mathrm{C} \\ & \text { and }(20 / 125 / 20)^{\circ} \mathrm{C} \end{aligned}$	$\pm 10 \mathrm{ppm} / \mathrm{K} ; \pm 5 \mathrm{ppm} / \mathrm{K} ; \pm 2 \mathrm{ppm} / \mathrm{K}$
4.25.1	-	Endurance at $70^{\circ} \mathrm{C}$	$U=\sqrt{P_{70} \times R}$ or $U=U_{\text {max. }}$; whichever is the less severe; 1.5 h on; 0.5 h off; $70^{\circ} \mathrm{C} ; 1000 \mathrm{~h}$ $70^{\circ} \mathrm{C} ; 8000 \mathrm{~h}$	$\begin{gathered} \pm(0.05 \% R+0.01 \Omega) \\ \pm(0.1 \% R+0.02 \Omega) \\ \hline \end{gathered}$
4.25.3	-	Endurance at upper category temperature	$\begin{aligned} & 125^{\circ} \mathrm{C} ; 1000 \mathrm{~h} \\ & 125^{\circ} \mathrm{C} ; 8000 \mathrm{~h} \end{aligned}$	$\begin{gathered} \pm(0.05 \% R+0.01 \Omega) \\ \pm(0.1 \% R+0.02 \Omega) \end{gathered}$
4.24	78 (Cab)	Damp heat, steady state	$\begin{gathered} (40 \pm 2)^{\circ} \mathrm{C} ; 56 \text { days; } \\ (93 \pm 3) \% \mathrm{RH} \\ \hline \end{gathered}$	$\pm(0.1 \% R+0.01 \Omega)$
4.23		Climatic sequence:		
4.23 .2	2 (Bb)	Dry heat	UCT; 16 h	
$4.23 .3$	$30 \text { (Db) }$	Damp heat, cyclic	$\begin{gathered} 55^{\circ} \mathrm{C} ; 24 \mathrm{~h} ; \\ >90 \text { \% RH; } \\ 5 \text { cycle } \end{gathered}$	
4.23.4	1 (Ab)	Cold	LCT; 2 h	
4.23 .5	13 (M)	Low air pressure	$8.5 \text { kPa; } 2 \mathrm{~h} ;(25 \pm 10)^{\circ} \mathrm{C}$	$\pm(0.1 \% R+0.02 \Omega)$
4.23.6	30 (Db)	Damp heat, cyclic	$\begin{gathered} 55^{\circ} \mathrm{C} ; 24 \mathrm{~h} ; \\ >90 \% \text { RH; } \\ 5 \text { cycles } \end{gathered}$	
4.23.7	-	D.c. load	$\begin{gathered} U=\sqrt{P_{70} \times R} \leq U_{\text {max. }} ; 1 \mathrm{~min} \\ \text { LCT }=-55^{\circ}{ }^{\circ} \mathrm{C} \\ \text { UCT }=125^{\circ} \mathrm{C} \end{gathered}$	
-	1 (Aa)	Cold	$-55^{\circ} \mathrm{C} ; 2 \mathrm{~h}$	\pm (0.05 \% R + 0.01Ω)

TEST PROCEDURES AND REQUIREMENTS

$\begin{aligned} & \text { EN 60115-1 } \\ & \text { CLAUSE } \end{aligned}$	$\begin{aligned} & \text { IEC 60068-2 }{ }^{(1)} \\ & \text { TEST METHOD } \end{aligned}$	TEST	PROCEDURE	REQUIREMENTS PERMISSIBLE CHANGE $(\delta \boldsymbol{R})$
			Stability for product types:	
			TNPU0402 e3	100Ω to $100 \mathrm{k} \Omega$
			TNPU0603 e3	100Ω to $100 \mathrm{k} \Omega$
			TNPU0805 e3	100Ω to $332 \mathrm{k} \Omega$
			TNPU1206 e3	100Ω to $511 \mathrm{k} \Omega$
4.19	14 (Na)	Rapid change of temperature	30 min at LCT and 30 min at UCT; LCT $=-55^{\circ} \mathrm{C}$; UCT $=125^{\circ} \mathrm{C}$; 1000 cycles	$\pm(0.1$ \% R + 0.01Ω)
4.13	-	Short time overload	$\begin{aligned} & U=2.5 \times \sqrt{P_{70} \times R} \\ & \text { or } U=2 \times U_{\text {max }} ; \end{aligned}$ whichever is the less severe; $5 \mathrm{~s}$	$\pm(0.05 \% R+0.01 \Omega)$
4.22	6 (Fc)	Vibration	Endurance by sweeping; 10 Hz to 2000 Hz ; no resonance; amplitude $\leq 1.5 \mathrm{~mm}$ or $\leq 200 \mathrm{~m} / \mathrm{s}^{2} ; 6 \mathrm{~h}$	$\begin{gathered} \pm(0.05 \% R+0.01 \Omega) \\ \text { no visible damage } \end{gathered}$
4.17	58 (Td)	Solderability	Solder bath method; SnPb40; non-activated flux $(215 \pm 3){ }^{\circ} \mathrm{C}$; $(3 \pm 0.3) \mathrm{s}$	Good tinning ($\geq 95 \%$ covered); no visible damage
			Solder bath method; SnAg3Cu0,5 or SnAg3,5; non-activated flux $(235 \pm 3)^{\circ} \mathrm{C} ;(2 \pm 0.2) \mathrm{s}$	
4.18	58 (Td)	Resistance to soldering heat	Solder bath method; $(260 \pm 5)^{\circ} \mathrm{C} ;(10 \pm 1) \mathrm{s}$	$\pm(0.02 \% R+0.01 \Omega)$
4.29	45 (XA)	Component solvent resistance	Isopropyl alcohol $+50^{\circ} \mathrm{C}$; method 2	No visible damage
4.32	$21\left(\mathrm{Ue}_{3}\right)$	Shear (adhesion)	RR 1005M and RR 1608M; 9 N	No visible damage
			RR 2012M and RR 3216M; 45 N	
4.33	$21\left(\mathrm{Ue}_{1}\right)$	Substrate bending	Depth 2 mm, 3 times	$\pm(0.05 \% R+0.01 \Omega)$ no visible damage, no open circuit in bent position
4.7	-	Voltage proof	$U_{\text {RMS }}=U_{\text {ins }} ; 60 \pm 5 \mathrm{~s}$	No flashover or breakdown
4.35	-	Flammability	IEC 60695-11-5 (1), needle flame test; 10 s	No burning after 30 s
4.39	-	Periodic electric overload: Standard operation mode	$\begin{gathered} U=\sqrt{15 \times P_{70} \times R} \\ \text { or } U=2 \times U_{\text {max.; }} \\ \text { whichever is the less severe; } \\ 0.1 \mathrm{~s} \text { on; } 2.5 \mathrm{~s} \text { off; } \\ 1000 \text { cycles } \end{gathered}$	$\pm(0.1 R+0.02 \Omega)$
4.37	67 (Cy)	Damp heat, steady state, accelerated	$(85 \pm 5)^{\circ} \mathrm{C}$; 56 days $(85 \pm 5) \% \mathrm{RH}$	$\pm(0.25 R+0.05 \Omega)$
4.38	-	```Electro static discharge (Human Body Model)```	IEC 61340-3-1 ${ }^{(1)}$; 3 pos. +3 neg. (equivalent to MIL-STD-883, method 3015) TNPU0402: 400 V TNPU0603: 1000 V TNPU0805: 1500 V TNPU1206: 2000 V	$\pm(0.5 R+0.05 \Omega)$

Note

(1) The quoted IEC standards are also released as EN standards with the same number and identical contents

DIMENSIONS

SOLDER PAD DIMENSIONS

RECOMMENDED SOLDER PAD DIMENSIONS

| TYPE / SIZE | REFLOW SOLDERING | | | WAVE SOLDERING | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | \mathbf{a}
 $(\mathbf{m m})$ | \mathbf{b}
 $(\mathbf{m m})$ | \mathbf{I}
 $(\mathbf{m m})$ | \mathbf{a}
 $(\mathbf{m m})$ | \mathbf{b}
 $(\mathbf{m m})$ |
| TNPU0402 e3 | 0.4 | 0.6 | 0.5 | - | - |
| TNPU0603 e3 | 0.5 | 0.9 | 1.0 | 0.9 | - |
| TNPU0805 e3 | 0.7 | 1.3 | 1.2 | 0.9 | 1.0 |
| TNPU1206 e3 | 0.9 | 1.7 | 2.0 | 1.1 | 1.3 |

Notes

- The given solder pad dimensions reflect the considerations for board design and assembly as outlined e.g. in standards IEC 61188-5-x ${ }^{(1)}$, or in publication IPC-7351
(1) The quoted IEC standards are also released as EN standards with the same number and identical contents

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Thin Film Resistors - SMD category:
Click to view products by Vishay manufacturer:
Other Similar products are found below :
M55342K06B34E0RT3 D55342E07B379BR-TR AR02BTC1872 AR02BTC18R7 AR02BTC3830 AR02BTC4220 AR02BTC4422
AR02BTC5100 AR02BTC5111 AR02BTC5762 AR02BTC8251 AR02BTC8452 AR03BTC0110 AR03BTC0120 AR03BTC0330
$\underline{\text { AR03BTC0390 AR03BTC1102 AR03BTC1103 AR03BTC1201 AR03BTC2000 AR03BTC2201 AR03BTC2203 AR03BTC2490 }}$
AR03BTC3003 AR03BTC3302 AR03BTC3901 AR03BTC4220 AR03BTC4223N AR03BTC5602 AR03BTC5603 AR03BTC5900
AR03BTC7500 AR03BTC9100 AR03BTC9103 AR03BTC9760 AR05BTC0280 AR05BTC1000 AR05BTC1100 AR05BTC1201
$\underline{\text { AR05BTC1202 AR05BTC1300 AR05BTC14R3 AR05BTC1500 AR05BTC1523 AR05BTC1620 AR05BTC1622 AR05BTC1623 }}$
$\underline{\text { AR05BTC1760 AR05BTC1800 AR05BTC1823 }}$

