

Thick Film Planar Resistors, Through-Hole, High Voltage

APPLICATIONS

Applications include power supplies, transformers and any application requiring operation within an environment where high voltages are used.

FEATURES

- 30 000 V capability
- Very low voltage coefficient to less than 1 ppm/V
- Outstanding stability under adverse conditions
- Stable cermet resistive element bonded to a high-purity alumina substrate
- high-purity alumina substrate
 Tough epoxy-based coating and high voltage stability
 RoHS*
 Available
 HALOGEN
- Dividers available, see Vishay Techno's TD datasheet (<u>www.vishay.com/doc?68042</u>)
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

Note

* This datasheet provides information about parts that are RoHS-compliant and / or parts that are non-RoHS-compliant. For example, parts with lead (Pb) terminations are not RoHS-compliant. Please see the information / tables in this datasheet for details.

STANDARD ELECTRICAL SPECIFICATIONS							
GLOBAL MODEL / SIZE	POWER RATING P _{25 °C} W	MAXIMUM WORKING VOLTAGE ⁽¹⁾ V	RESISTANCE RANGE ⁽²⁾ Ω	TOLERANCE ± %	TEMPERATURE COEFFICIENT ± ppm/°C		
TR03C TR03X	0.25	0.8K	300 to 3M	1, 2, 5, 10, 20	100		
			300 to 25M	1, 2, 5, 10, 20	200, 300		
		2.5K	25M to 250M	1, 2, 5, 10, 20	200, 300		
			260M to 2G	5, 10, 20	200, 300		
			2.1G to 10G	5, 10, 20	500		
TR05D		4K -	500 to 25M	1, 2, 5, 10, 20	100		
			3K to 200M	1, 2, 5, 10, 20	200, 300		
	0.5	5К	30M to 1G	1, 2, 5, 10, 20	200, 300		
TR05X			1.1G to 20G	5, 10, 20	200, 300		
			21G to 100G	5, 10, 20	500		
	1	6.5K -	1K to 16M	1, 2, 5, 10, 20	100		
TR10F			2K to 120M	1, 2, 5, 10, 20	200, 300		
		10K	20M to 1G	1, 2, 5, 10, 20	200, 300		
TR10X			1.1G to 15G	5, 10, 20	200, 300		
			16G to 1T	5, 10, 20	500		
TR15G	1.5	12.5K -	1.5K to 45M	1, 2, 5, 10, 20	100		
INISG			5K to 340M	1, 2, 5, 10, 20	200, 300		
TR15X		15K	60M to 1G	1, 2, 5, 10, 20	200, 300		
			1.1G to 35G	5, 10, 20	200, 300		
			36G to 1.5T	5, 10, 20	500		
TR20H	2	17.5K -	2K to 64M	1, 2, 5, 10, 20	100		
			8K to 480M	1, 2, 5, 10, 20	200, 300		
TR20X		20K	80M to 1G	1, 2, 5, 10, 20	200, 300		
			1.1G to 50G	5, 10, 20	200, 300		
			51G to 2T	5, 10, 20	500		
TR30J		25K -	3K to 82M	1, 2, 5, 10, 20	100		
TR30J			8.5K to 620M	1, 2, 5, 10, 20	200, 300		
TR30X	3	30К	80M to 1G	1, 2, 5, 10, 20	200, 300		
			1.1G to 60G	5, 10, 20	200, 300		
			61G to 3T	5, 10, 20	500		

Notes

Custom sizes available

Voltage coefficient: typically less than 1 ppm/V (tested per MIL-STD-202)

⁽¹⁾ Continuous working voltage shall be $\sqrt{P \times R}$ or maximum working voltage, whichever is less.

⁽²⁾ All resistance values are calibrated at 100 V_{DC}. Calibration at other voltages available upon request.

1 For technical questions, contact: <u>te1resistors@vishay.com</u> Document Number: 68000

SHAY, www.vishay.com

Vishay Techno

TR

GLOBAL PART NUMBER INFORMATION							
New Global Part Numbering: TR20H1K00FKEB (preferred part number format)							
TR	2 0	Η 1	К 0	0 F	KE	В	
						<u> </u>	
	WER / VOLTAGE RATING	RESISTANCE VALUE	TOLERANCE	TCR	TERMINAL FINISH	PACKAGING	
	5 W, med. voltage	$R = \Omega$	F = ± 1.0 %	K = 100 ppm	E = Sn100	B = bag	
	5 W, max. voltage	$K = k\Omega$	$G = \pm 2.0 \%$	N = 200 ppm	R = Sn60/Pb40	S = strip	
	W, med. voltage	$M = M\Omega$	$J = \pm 5.0 \%$	M = 300 ppm			
	W, max. voltage	$G = G\Omega$ T = TΩ	$K = \pm 10.0 \%$	P = 500 ppm			
	W, med. voltage W, max. voltage	$1 = 1\Omega^{2}$ 400R = 400 Ω	M = ± 20.0 %				
	W, med. voltage	$10M0 = 10 M\Omega$					
	W, max. voltage	$1T00 = 1 T\Omega$					
	W, med. voltage						
20X = 2 ³	W, max. voltage						
	N, med. voltage						
30X = 3	W, max. voltage						
Historical Part Numbering: TR20H1001FKe3 (will continue to be accepted)							
TR	20H		1001	F	ĸ	e3	
HISTORICAL MODEL	SIZE / POWER RA	ATING RESIS	STANCE VALUE	TOLERANCE	TCR TEF	MINAL FINISH	
						-	

Note

• For additional information on packaging, refer to the Through Hole Resistor Packaging document (www.vishay.com/doc?31544).

MECHANICAL SPECIFICATIONS

Resistive Element: thick film Substrate: 96 % pure alumina Encapsulation: epoxy base, conformal coating Terminals: solder plated copper leads Terminal Strength: 4.5 pounds pull-test Power: derated from ambient temperature +25 °C

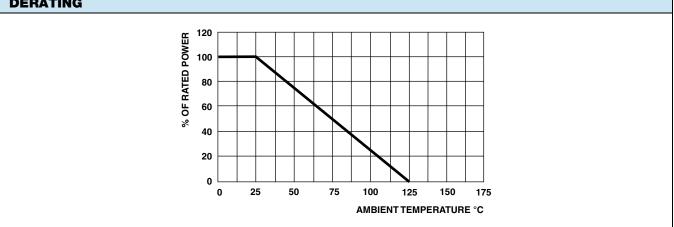
ENVIRONMENTAL SPECIFICATIONS

Temperature Range: -55 °C to +125 °C (for higher temperature range, consult factory) **Load Life:** less than 0.15 %, 1000 h

DIMENSIONS in inches (millimeters)							
$B \downarrow (\longrightarrow C) \rightarrow (C) \rightarrow $							
MODEL	A	B	C	D			
	(LENGTH)	(HEIGHT)	(LEAD SPACING)	(LEAD DIA.)			
TR03	0.300 ± 0.030	0.210 ± 0.021	0.200 ± 0.020	0.025 ± 0.002			
	(7.62 ± 0.76)	(5.33 ± 0.53)	(5.08 ± 0.51)	(0.64 ± 0.05)			
TR05	0.500± 0.050 (12.70 ± 1.27)	0.300 ± 0.030 (7.62 ± 0.76)	0.400 ± 0.040 (10.16 ± 1.02)	$\begin{array}{c} 0.025 \pm 0.002 \\ (0.64 \pm 0.05) \end{array}$			
TR10	1.00 ± 0.100	0.350 ± 0.035	0.900 ± 0.090	0.032 ± 0.002			
	(25.40 ± 2.54)	(8.89 ± 0.89)	(22.86 ± 2.29)	(0.81 ± 0.05)			
TR15	1.50 ± 0.150	0.350 ± 0.035	1.40 ± 0.140	0.032 ± 0.002			
	(38.10 ± 3.81)	(8.89 ± 0.89)	(35.56 ± 3.56)	(0.81 ± 0.05)			
TR20	2.00 ± 0.200 (50.80 ± 5.08)	0.350 ± 0.035 (8.89 ± 0.89)	1.90 ± 0.190 (48.26 ± 4.83)	$\begin{array}{c} 0.032 \pm 0.002 \\ (0.81 \pm 0.05) \end{array}$			
TR30	3.00 ± 0.300	0.400 ± 0.040	2.90 ± 0.290	0.032 ± 0.002			
	(76.20 ± 7.62)	(10.16 ± 1.02)	(73.66 ± 7.37)	(0.81 ± 0.05)			

Revision: 12-Jan-16

2 For technical questions, contact: te1resistors@vishay.com Document Number: 68000


THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Techno

TR

DERATING

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Thick Film Resistors - Through Hole category:

Click to view products by Vishay manufacturer:

Other Similar products are found below :

 M8340104M4701GCD03
 M8340105K3300GGD03
 M8340105K3922FGD03
 M8340106K1002JCD03
 M8340107K1002GGD03

 M8340107K1152FGD03
 M8340107K2701GCD03
 M8340107M2002GCD03
 M8340108K1000GCD03
 M8340108K5601GCD03

 M8340108M2203GCD03
 M8340109K1002JCD03
 M8340109K1003GCD03
 M8340109K2001GCD03
 M8340109K5101GGD03

 FHV05010M0FKRB
 MOX-2-125005F
 MP850-3.00-1%
 hte24511kf
 SM-SP093
 ARC3.11 2M J A
 M8340105K1001GCD03

 M8340105K3002GGD03
 M8340105M1002JGD03
 M8340107K2001GGD03
 M8340107K4701GGD03
 M8340107K5101GGD03

 M8340107K5600GGD03
 M8340105M1002JGD03
 M8340107K2001GGD03
 M8340107K4701GGD03
 M8340109K2202GGD03

 M8340109K5601GCD03
 M8340108K4990FGD03
 M8340108K49R9FGD03
 M8340107K2001GCD03
 M8340102M4701GBD04

 M8340102K1002GBD04
 M8340102K1002GAD04
 M8340109K2002GGD03
 M8340107K1003GGD03
 M8340107M5100GGD03
 OE1305

 WMHP100-R22J
 M8340104K39R2FCD03
 M8340106MA012JHD03
 M8340107K1003GGD03
 M8340107K510.1%
 MS126-249K-0.1%