GREEN (5-2008)*

Vishay Semiconductors

High Speed Infrared Emitting Diode, 870 nm, GaAlAs Double Hetero

DESCRIPTION

TSFF5210 is an infrared, 870 nm emitting diode in GaAlAs double hetero (DH) technology with high radiant power and high speed, molded in a clear, untinted plastic package.

FEATURES

Package type: leaded
Package form: T-1 3/4
Dimensions (in mm): Ø 5

Leads with stand-off

• Peak wavelength: $\lambda_p = 870 \text{ nm}$

High reliability

· High radiant power

· High radiant intensity

• Angle of half intensity: $\varphi = \pm 10^{\circ}$

· Low forward voltage

· Suitable for high pulse current operation

High modulation bandwidth: f_c = 24 MHz

· Good spectral matching with Si photodetectors

 Compliant to RoHS Directive 2002/95/EC and in accordance to WEEE 2002/96/EC

Note

** Please see document "Vishay Material Category Policy": www.vishay.com/doc?99902

APPLICATIONS

- Infrared video data transmission between camcorder and TV set
- Free air data transmission systems with high modulation frequencies or high data transmission rate requirements
- · Smoke-automatic fire detectors

PRODUCT SUMMARY				
COMPONENT	I _e (mW/sr)	φ (deg)	λ _p (nm)	t _r (ns)
TSFF5210	180	± 10	870	15

Note

Test conditions see table "Basic Characteristics"

ORDERING INFORMATION				
ORDERING CODE	PACKAGING	REMARKS	PACKAGE FORM	
TSFF5210	Bulk	MOQ: 4000 pcs, 4000 pcs/bulk	T-1¾	

Note

MOQ: minimum order quantity

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)				
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
Reverse voltage		V_R	5	V
Forward current		I _F	100	mA
Peak forward current	$t_p/T = 0.5$, $t_p = 100 \mu s$	I _{FM}	200	mA
Surge forward current	t _p = 100 μs	I _{FSM}	1	А
Power dissipation		P _V	180	mW

Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)				
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
Junction temperature		T _j	100	°C
Operating temperature range		T _{amb}	- 40 to + 85	°C
Storage temperature range		T _{stg}	- 40 to + 100	°C
Soldering temperature	$t \le 5$ s, 2 mm from case	T _{sd}	260	°C
Thermal resistance junction/ambient	J-STD-051, leads 7 mm, soldered on PCB	R _{thJA}	230	K/W

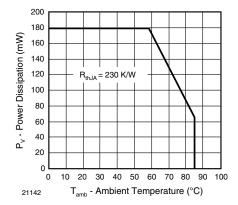


Fig. 1 - Power Dissipation Limit vs. Ambient Temperature

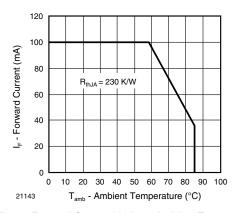


Fig. 2 - Forward Current Limit vs. Ambient Temperature

PARAMETER	CS (T _{amb} = 25 °C, unless other TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
TANAMETER	$I_{\rm F} = 100 \text{ mA}, t_{\rm D} = 20 \text{ ms}$	V _F		1.5	1.8	V
Forward voltage	$I_F = 1.00 \text{ mA}, t_p = 20 \text{ ms}$ $I_F = 1.00 \text{ µs}$	V _F		2.3	3.0	V
Temperature coefficient of V _F	I _F = 1 mA	TK _{VF}		- 1.8		mV/K
Reverse current	V _R = 5 V	I _R			10	μA
Junction capacitance	$V_R = 0 \text{ V, } f = 1 \text{ MHz, } E = 0$	Cj		125		pF
Radiant intensity	I _F = 100 mA, t _p = 20 ms	I _e	120	180	360	mW/sr
	$I_F = 1 \text{ A}, t_p = 100 \ \mu\text{s}$	I _e		1800		mW/sr
Radiant power	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	φ _e		50		mW
Temperature coefficient of φ _e	I _F = 100 mA	TKφ _e		- 0.35		%/K
Angle of half intensity		φ		± 10		deg
Peak wavelength	I _F = 100 mA	λ_{p}		870		nm
Spectral bandwidth	I _F = 100 mA	Δλ		40		nm
Temperature coefficient of λ_p	I _F = 100 mA	TKλ _p		0.25		nm/K
Rise time	I _F = 100 mA	t _r		15		ns
Fall time	I _F = 100 mA	t _f		15		ns
Cut-off frequency	I _{DC} = 70 mA, I _{AC} = 30 mA pp	f _c		24		MHz
Virtual source diameter		d		3.7		mm

BASIC CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

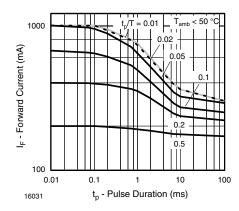


Fig. 3 - Pulse Forward Current vs. Pulse Duration

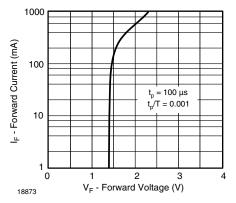


Fig. 4 - Forward Current vs. Forward Voltage

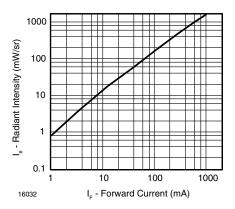


Fig. 5 - Radiant Intensity vs. Forward Current

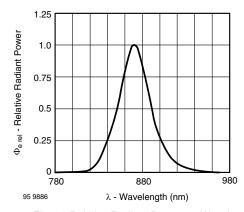


Fig. 6 - Relative Radiant Power vs. Wavelength

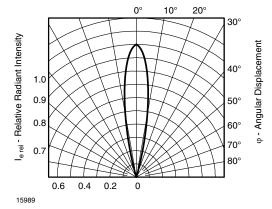


Fig. 7 - Relative Radiant Intensity vs. Angular Displacement

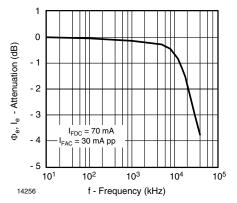
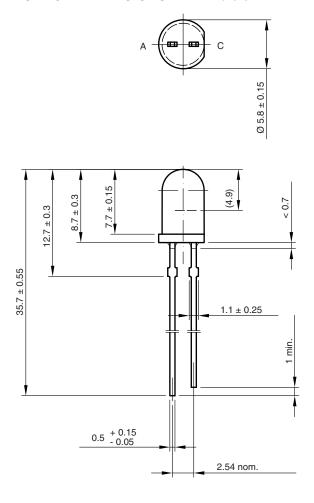
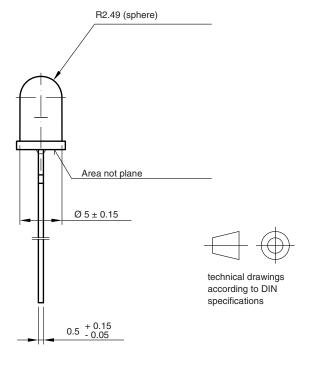




Fig. 8 - Attenuation vs. Frequency

Vishay Semiconductors

PACKAGE DIMENSIONS in millimeters

6.544-5258.09-4 Issue: 4; 19.05.09 15909

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Infrared Emitters - High Power category:

Click to view products by Vishay manufacturer:

Other Similar products are found below:

QED123UL TSHA6201 TSHA6202 SFH 4030 SFH 4060 SFH 4775S A01 SFH 4726AS SFH 4725AS VSMY2853SLX01

VSMY2853RGX01 VSMY2853GX01 VSMY2850GX01 IN-P281ASGHR IN-P281ASGIR VSMY2890GX01 VSMY2890RGX01 SFH

4728AS A01 SST-10-IRD-B130H-S940 SST-10-IRD-B50H-S940 QEE123 TSHA6200 TSML1030 VTE1291W-2H LL-304IRC4B-2AD

LL-503HIRT2E-1CC LL-503IRC2E-2AC LL-503IRC2V-2AD LL-503IRT2E-2AC LL-503IRT2E-2AE LL-503SIRC2E-1BD LL-S170IRC
2A SFH 4259 OS5RKAZ5D1P OSB56LZE31D OSG58AZ5D1P OSI3CA5111A OSI3NAS1C1A OSI5LA56A1A OSI5XNE3E1E

OSIXCA5121A OSIXCAS1C1A OSM54LZ5D1P OSM5D3Z2C1P OSMR43Z2C1P OSO5PAZ161D OSOR7161D OSPW7161D

OSPW71B1P OSR5PAZE31D OSR9XAE3E1E