

IR Receiver Modules for Remote Control Systems

DESIGN SUPPORT TOOLS

click logo to get started

ORDERING CODE

Taping:

TSOP37...TT1 - top view taped TSOP37...TT2 - top view taped

FEATURES

- Very low supply current
- · Photo detectors and preamplifier in one package
- · Internal filter for PCM frequency
- Supply voltage: 2.5 V to 5.5 V
- · Improved immunity against ambient light
- Insensitive to supply voltage ripple and noise
- · External metal shield
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

RoHS

HALOGEN FREE

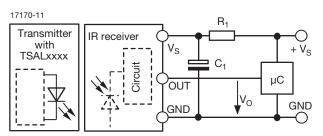
GREEN (5-2008)

DESCRIPTION

The TSOP372..H, TSOP374..H series are miniaturized receiver modules for infrared remote control systems. A PIN diode and a preamplifier are assembled on a PCB, the epoxy lens cap contains an IR filter.

The TSOP374...H series devices are optimized to suppress almost all spurious pulses from energy saving lamps like CFLs. The AGC4 used in the TSOP374...H may suppress some data signals. The TSOP372...H series are provided primarily for compatibility with old AGC2 designs. New designs should prefer the TSOP374...H series containing the newer AGC4.

These components have not been qualified according to automotive specifications.


PARTS T	ABLE			
AGC		LEGACY, FOR LONG BURST REMOTE CONTROLS (AGC2)	RECOMMENDED FOR LONG BURST CODES (AGC4)	
	36 kHz	TSOP37236H	TSOP37436H ^{(1)(/2)(3)}	
Carrier	38 kHz	TSOP37238H	TSOP37438H (4)(5)(8)	
frequency	40 kHz	TSOP37240H	TSOP37440H	
	56 kHz	TSOP37256H	TSOP37456 H(6)(7)	
Package		Belobo	g shield	
Pinning		1 = OUT, 2, 3, 6, 7, 8 = GND, 4, 5 = V _S		
Dimensions (mm)		4.3 W x 4.3 H x 1.0 D		
Mounting		SMD		
Application		Remote control		
Best choice for		(1) RC-5 (2) RC-6 (3) Panasonic (4) NEC (5) Sharp (6) r-step (7) Thomson RCA (8) r-map		

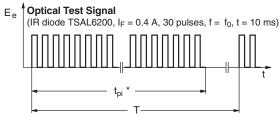
BLOCK DIAGRAM

AGC Band Demodulator OUT OUT Control circuit GND

APPLICATION CIRCUIT

 R_1 and C_1 recommended to reduce supply ripple for $V_S < 2.8 \text{ V}$

ABSOLUTE MAXIMUM RATINGS				
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
Supply voltage		Vs	-0.3 to +6	V
Supply current		I _S	3	mA
Output voltage		Vo	-0.3 to (V _S + 0.3)	V
Output current		I ₀	5	mA
Junction temperature		T _j	100	°C
Storage temperature range		T _{stg}	-25 to +85	°C
Operating temperature range		T _{amb}	-25 to +85	°C
Power consumption	T _{amb} ≤ 85 °C	P _{tot}	10	mW


Note

20445-5

• Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect the device reliability

ELECTRICAL AND OPTI	CAL CHARACTERISTICS	(T _{amb} = 25 °	°C, unless o	therwise s	pecified)	
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage		Vs	2.5	-	5.5	V
Supply current	$V_S = 3.3 \text{ V}, E_V = 0$	I _{SD}	0.27	0.35	0.45	mA
Supply current	$E_v = 40$ klx, sunlight	I _{SH}	-	0.45	-	mA
Transmission distance	$E_v = 0$, IR diode TSAL6200, $I_F = 50$ mA, test signal see Fig. 1	d	-	24	-	m
Output voltage low	$I_{OSL} = 0.5 \text{ mA}, E_e = 0.7 \text{ mW/m}^2,$ test signal see Fig. 1	V _{OSL}	-	-	100	mV
Minimum irradiance	Pulse width tolerance: t_{pi} - $5/f_o < t_{po} < t_{pi} + 6/f_o$, test signal see Fig. 1	E _{e min.}	-	0.12	0.25	mW/m²
Maximum irradiance	t_{pi} - 5/f _o < t_{po} < t_{pi} + 6/f _o , test signal see Fig. 1	E _{e max.}	30	ı	-	W/m ²
Directivity	Angle of half transmission distance	Ψ1/2	-	± 75	-	0

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

 * t_{pi} \geq 10/f₀ is recommended for optimal function

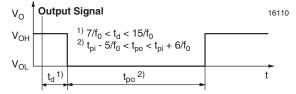


Fig. 1 - Output Function

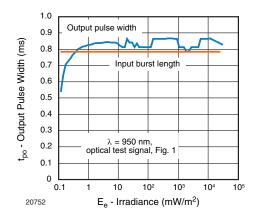


Fig. 2 - Output Pulse Width vs. Irradiance

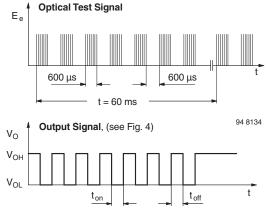


Fig. 3 - Output Function

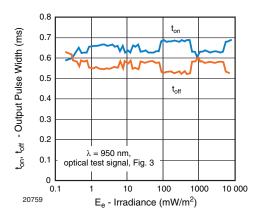


Fig. 4 - Output Pulse Diagram

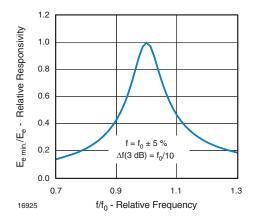


Fig. 5 - Frequency Dependance of Responsivity

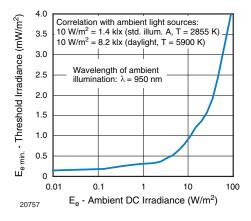


Fig. 6 - Sensitivity in Bright Ambient

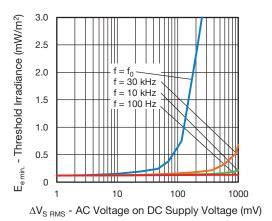


Fig. 7 - Sensitivity vs. Supply Voltage Disturbances

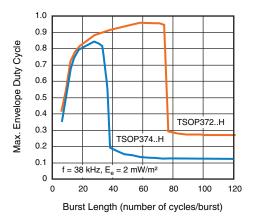


Fig. 8 - Max. Envelope Duty Cycle vs. Burst Length

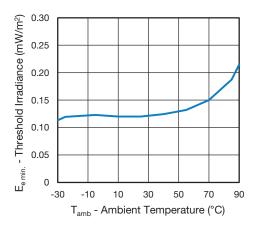


Fig. 9 - Sensitivity vs. Ambient Temperature

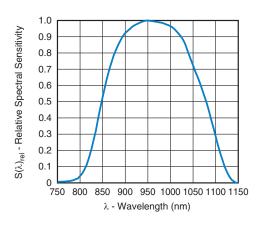


Fig. 10 - Relative Spectral Sensitivity vs. Wavelength

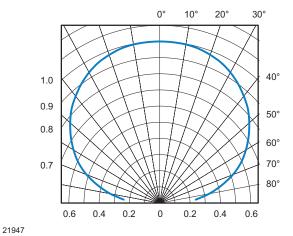


Fig. 11 - Directivity

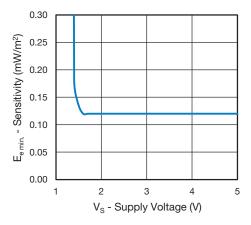


Fig. 12 - Sensitivity vs. Supply Voltage

SUITABLE DATA FORMAT

The TSOP372..H, TSOP374..H series is designed to suppress spurious output pulses due to noise or disturbance signals. The devices can distinguish data signals from noise due to differences in frequency, burst length, and envelope duty cycle. The data signal should be close to the device's band-pass center frequency (e.g. 38 kHz) and fulfill the conditions in the table below.

When a data signal is applied to the TSOP372..H, TSOP374..H in the presence of a disturbance, the sensitivity of the receiver is automatically reduced by the AGC to insure that no spurious pulses are present at the receiver's output. Some examples which are suppressed are:

- DC light (e.g. from tungsten bulbs sunlight)
- · Continuous signals at any frequency
- Strongly or weakly modulated patterns from fluorescent lamps with electronic ballasts (see Fig. 13 or Fig. 14)

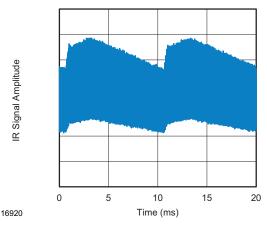


Fig. 13 - IR Signal from Fluorescent Lamp With Low Modulation

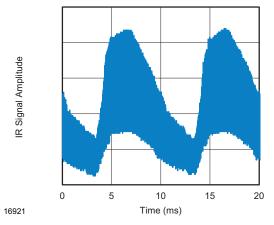
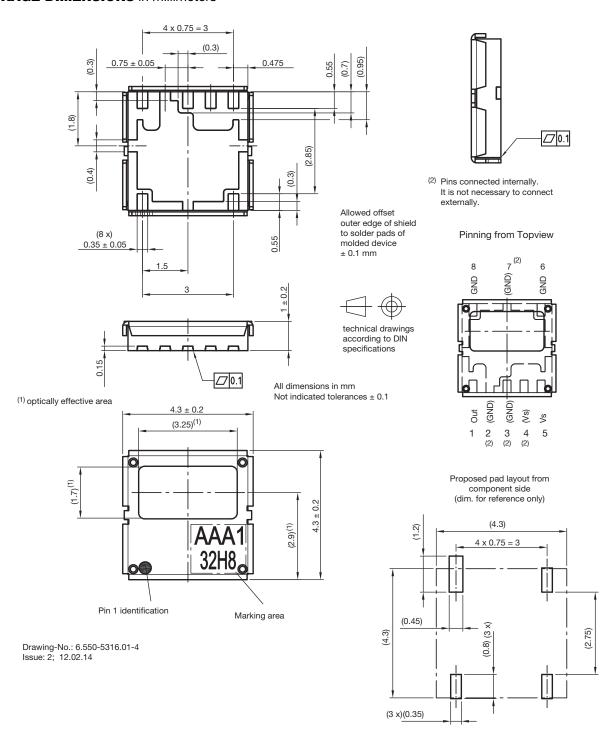


Fig. 14 - IR Signal from Fluorescent Lamp With High Modulation

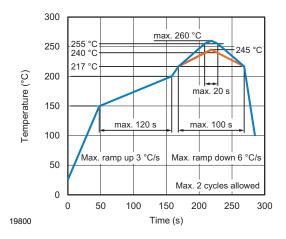

	TSOP372H	TSOP374H
Minimum burst length	10 cycles/burst	10 cycles/burst
After each burst of length a minimum gap time is required of	10 to 70 cycles ≥ 10 cycles	10 to 35 cycles ≥ 10 cycles
For bursts greater than a minimum gap time in the data stream is needed of	70 cycles > 4 x burst length	35 cycles > 10 x burst length
Maximum number of continuous short bursts/second	1800	1500
NEC code	Yes	Preferred
RC5 / RC6 code	Yes	Preferred
Thomson 56 kHz code	Yes	Preferred
Sharp code	Yes	Preferred
Suppression of interference from fluorescent lamps	Mild disturbance patterns are suppressed (example: signal pattern of Fig. 13)	Complex and critical disturbance patterns are suppressed (example: signal pattern of Fig. 14 or highly dimmed LCDs)

Notes

- For data formats with short bursts (less than 10 carrier cycles) please see the datasheet for TSOP373..H, TSOP375..H
- For Sony 12, 15, and 20 bit IR codes please see the datasheet of TSOP37S40H

PACKAGE DIMENSIONS in millimeters

ASSEMBLY INSTRUCTIONS

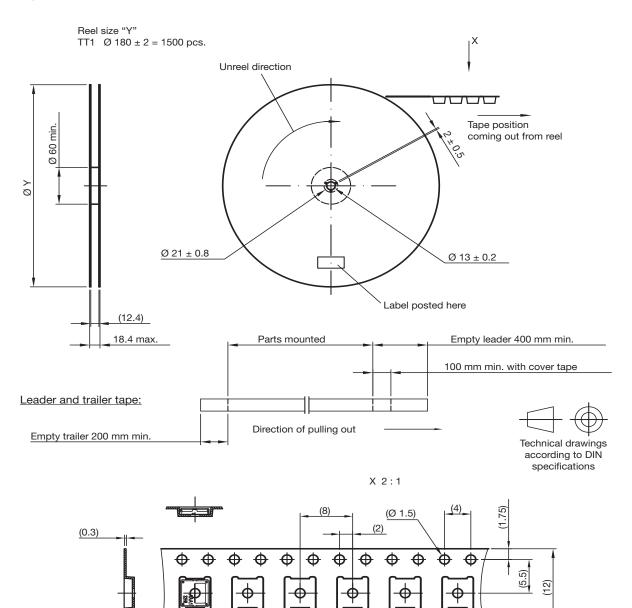

Reflow Soldering

- Reflow soldering must be done within 168 h while stored under a max. temperature of 30 °C, 60 % RH after opening the dry pack envelope
- Set the furnace temperatures for pre-heating and heating in accordance with the reflow temperature profile as shown in the diagram. Exercise extreme care to keep the maximum temperature below 260 °C. The temperature shown in the profile means the temperature at the device surface. Since there is a temperature difference between the component and the circuit board, it should be verified that the temperature of the device is accurately being measured
- Handling after reflow should be done only after the work surface has been cooled off

Manual Soldering

- Use a soldering iron of 25 W or less. Adjust the temperature of the soldering iron below 300 °C
- Finish soldering within 3 s
- Handle products only after the temperature has cooled off

VISHAY LEAD (Pb)-FREE REFLOW SOLDER PROFILE


ORDERING INFORMATION			
ORDERING CODE	PACKAGING	VOLUME (1)	REMARKS
TSOP37HTT1	Tana and roal	MOQ: 1500 pcs	3.95 mm x 3.95 mm x 0.75 mm
TSOP37HTT2	Tape and reel	MOQ: 5000 pcs	3.95 HIIII & 3.95 HIIII & 0.75 HIIII

Note

(1) MOQ: minimum order quantity

TAPING VERSION TSOP37...H DIMENSIONS in millimeters

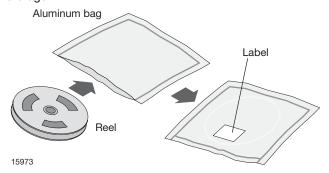
Tape and reel dimensions:

Drawing-No.: 9.700-5380.01-4

Issue: 3; 07.03.18

Not indicated tolerances ± 0.1

LABEL


Standard bar code labels for finished goods

The standard bar code labels are product labels and used for identification of goods. The finished goods are packed in final packing area. The standard packing units are labeled with standard bar code labels before transported as finished goods to warehouses. The labels are on each packing unit and contain Vishay Semiconductor GmbH specific data.

	<u> </u>	DUCT LABEL (finished goods)
PLAIN WRITING	ABBREVIATION	LENGTH
Item-description	-	18
Item-number	INO	8
Selection-code	SEL	3
LOT-/serial-number	BATCH	10
Data-code	COD	3 (YWW)
Plant-code	PTC	2
Quantity	QTY	8
Accepted by	ACC	-
Packed by	PCK	-
Mixed code indicator	MIXED CODE	-
Origin	xxxxxxx+	Company logo
LONG BAR CODE TOP	TYPE	LENGTH
Item-number	N	8
Plant-code	N	2
Sequence-number	X	3
Quantity	N	8
Total length	-	21
SHORT BAR CODE BOTTOM	TYPE	LENGTH
Selection-code	X	3
Data-code	N	3
Batch-number	X	10
Filter	-	1
Total length	-	17

DRY PACKING

The reel is packed in an anti-humidity bag to protect the devices from absorbing moisture during transportation and storage.

FINAL PACKING

The sealed reel is packed into a cardboard box.

TSOP372...H, TSOP374...H

Vishay Semiconductors

RECOMMENDED METHOD OF STORAGE

Dry box storage is recommended as soon as the aluminum bag has been opened to prevent moisture absorption. The following conditions should be observed, if dry boxes are not available:

- Storage temperature 10 °C to 30 °C
- Storage humidity ≤ 60 % RH max.

After more than 168 h under these conditions moisture content will be too high for reflow soldering.

In case of moisture absorption, the devices will recover to the former condition by drying under the following condition: 192 h at 40 $^{\circ}$ C + 5 $^{\circ}$ C / - 0 $^{\circ}$ C and < 5 $^{\circ}$ RH (dry air / nitrogen) or

96 h at 60 °C + 5 °C and < 5 % RH for all device containers or

24 h at 125 °C + 5 °C not suitable for reel or tubes.

An EIA JEDEC® standard J-STD-020 level 3 label is included on all dry bags.

EIA JEDEC standard J-STD-020 level 3 label is included on all dry bags

ESD PRECAUTION

Proper storage and handling procedures should be followed to prevent ESD damage to the devices especially when they are removed from the antistatic shielding bag. Electrostatic sensitive devices warning labels are on the packaging.

VISHAY SEMICONDUCTORS STANDARD BAR CODE LABELS

The Vishay Semiconductors standard bar code labels are printed at final packing areas. The labels are on each packing unit and contain Vishay Semiconductors specific data.

BAR CODE PRODUCT LABEL (example)

22170

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Infrared Receivers category:

Click to view products by Vishay manufacturer:

Other Similar products are found below:

TSOP38436 TSOP6136TT TSOP2456 TSOP31456 TSOP38336 TSOP6130TT TSOP34438SS1V TSOP57438ETT1 TSOP6140TR
TSOP53356 TSOP53256 TSOP31136 TSOP75238WTT TSOP75338TR TSSP77038TT TSOP59438 OSRB38C9AA TSOP75456TR
TSSP4038SS1XB TSOP39438TR1 TSOP6133TR IS471FE OSRB38C9BA LT1328CMS8#PBF PB11CNT15WR IRM-3638M3F99-E80
IRM-3638MF56 IRM-3638C/TR1-11 DY-PT4133B-A2 HL-304PT1C-T HL-503PT1C-T PT2424-6B PT334-6B-52 R903V1-7C(L)
GP1UD28YK GP1UM272RKVF GP1UM281QKVF TSOP36438TT TSOP75340TT TSOP98238 TSOP98456 TSDP34138 TSDP34156
TSDP34338 TSDP34356 TSMP4138 TSMP58000 TSMP58138 TSMP6000TT TSMP77000TR