TSSP58038

www.vishay.com

Vishay Semiconductors

IR Receiver Module for Light Barrier Systems

DESIGN SUPPORT TOOLS AVAILABLE

MECHANICAL DATA

Pinning:

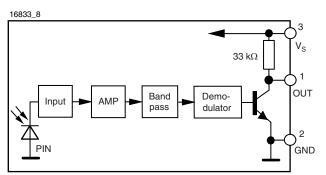
 $1 = OUT, 2 = GND, 3 = V_S$

DESCRIPTION

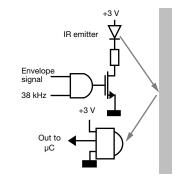
The TSSP58038 is a compact infrared detector module for presence sensing applications. It receives 38 kHz modulated signals and has a peak sensitivity of 940 nm.

This component has not been qualified according to automotive specifications.

FEATURES


- Up to 2 m for presence sensing
- Uses modulated bursts at 38 kHz
- PIN diode and sensor IC in one package
- · Low supply current
- Shielding against EMI
- Visible light is suppressed by IR filter
- Insensitive to supply voltage ripple and noise
- Supply voltage: 2.5 V to 5.5 V
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS


- Reflective sensors for hand dryers, towel or soap dispensers, water faucets, toilet flush
- Vending machine fall detection
- · Security and pet gates
- Person or object vicinity activation

PARTS TABLE						
Carrier frequency	38 kHz	TSSP58038				
Package		Minicast				
Pinning		1 = OUT, 2 = GND, 3 = V _S				
Dimensions (mm)		5.0 W x 6.95 H x 4.8 D				
Mounting		Leaded				
Application		Presence sensors				

BLOCK DIAGRAM

PRESENCE SENSING

Rev. 1.7, 10-Apr-2019

1

Document Number: 82479

Pb-free

HALOGEN

GREEN

(5-2008)

Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS								
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT				
Supply voltage		VS	-0.3 to +6	V				
Supply current		I _S	5	mA				
Output voltage		Vo	-0.3 to (V _S + 0.3)	V				
Output current		Ι _Ο	5	mA				
Junction temperature		Tj	100	°C				
Storage temperature range		T _{stg}	-25 to +85	°C				
Operating temperature range		T _{amb}	-25 to +85	°C				
Power consumption	T _{amb} ≤ 85 °C	P _{tot}	10	mW				

Note

• Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect the device reliability

ELECTRICAL AND OPTICAL CHARACTERISTICS ($T_{amb} = 25 \text{ °C}$, unless otherwise specified)									
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT			
Supply current (pin 3)	$E_v = 0, V_S = 5 V$	I _{SD}	0.55	0.7	0.9	mA			
Supply current (pirt 3)	E _v = 40 klx, sunlight	I _{SH}	-	0.8	-	mA			
Supply voltage		Vs	2.5	-	5.5	V			
Transmission distance	$E_v = 0$, test signal see Fig. 1, IR diode TSAL6200, $I_F = 50 \text{ mA}$	d	-	8	-	m			
Output voltage low (pin 1)	I _{OSL} = 0.5 mA, E _e = 2 mW/m ² , test signal see Fig. 1	V _{OSL}	-	-	100	mV			
Minimum irradiance	Pulse width tolerance: $t_{pi} - 5/f_o < t_{po} < t_{pi} + 6/f_o$, test signal see Fig. 1	E _{e min.}	-	0.7	1.2	mW/m ²			
Maximum irradiance	t _{pi} - 5/f _o < t _{po} < t _{pi} + 6/f _o , test signal see Fig. 1	E _{e max.}	50	-	-	W/m ²			
Directivity	Angle of half transmission distance	φ1/2	-	± 45	-	deg			

Vishay Semiconductors

TYPICAL CHARACTERISTICS ($T_{amb} = 25 \text{ °C}$, unless otherwise specified)

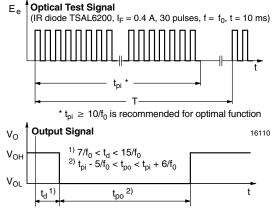


Fig. 1 - Output Active Low

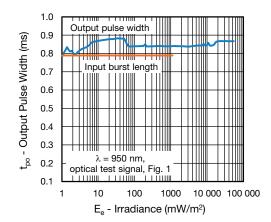
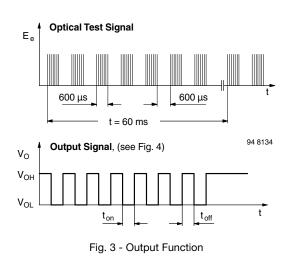



Fig. 2 - Pulse Length and Sensitivity in Dark Ambient

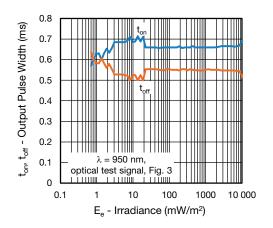


Fig. 4 - Output Pulse Diagram

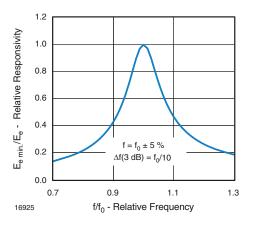


Fig. 5 - Frequency Dependence of Responsivity

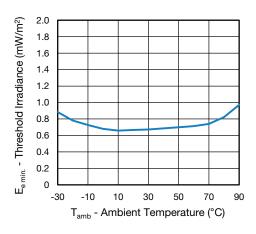
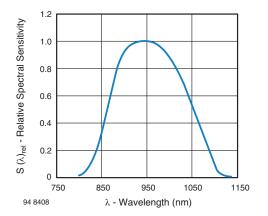



Fig. 6 - Sensitivity vs. Ambient Temperature

Rev. 1.7, 10-Apr-2019

Vishay Semiconductors

www.vishay.com

Fig. 7 - Relative Spectral Sensitivity vs. Wavelength

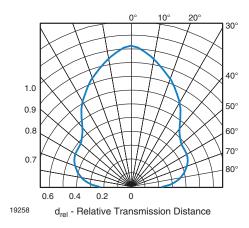


Fig. 8 - Horizontal Directivity

The typical application of this device is a reflective or beam break sensor with active low "detect" or "no detect" information contained in its output. Applications requiring up to 2 m beam break or 1 m reflective range benefit from the lower gain of these sensors because they are less sensitive to stray signal from the emitter, simplifying the mechanical design.

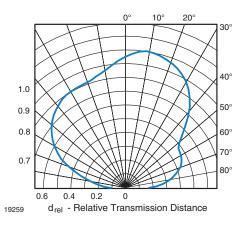


Fig. 9 - Vertical Directivity

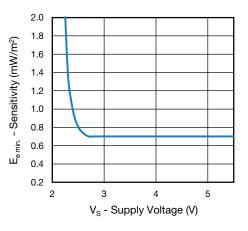
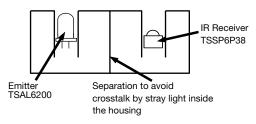
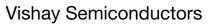



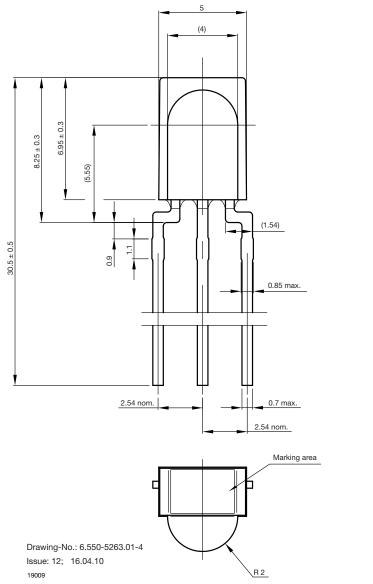
Fig. 10 - Sensitivity vs. Supply Voltage

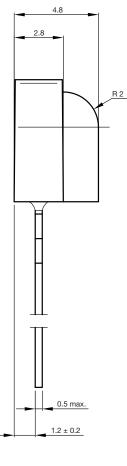
Example for a sensor hardware:



There should be no common window in front of the emitter and detector in order to avoid crosstalk via guided light through the window.

Rev. 1.7, 10-Apr-2019


4



PACKAGE DIMENSIONS in millimeters

Not indicated to lerances ± 0.2

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Infrared Receivers category:

Click to view products by Vishay manufacturer:

Other Similar products are found below :

 TSOP38436
 TSOP6136TT
 TSOP2456
 TSOP31456
 TSOP38336
 TSOP6130TT
 TSOP57438ETT1
 TSOP6140TR
 TSOP53356
 TSOP53256

 TSOP31136
 TSOP75338TR
 TSSP77038TT
 TSOP59438
 OSRB38C9AA
 TSOP75456TR
 TSSP4038SS1XB
 TSOP39438TR1
 TSOP6133TR

 IS471FE
 OSRB38C9BA
 LT1328CMS8#PBF
 PB11CNT15WR
 IRM-3638M3F99-E80
 IRM-3638MF56
 IRM-3638C/TR1-11
 DY-PT4133B

 A2
 HL-304PT1C-T
 HL-503PT1C-T
 PT2424-6B
 PT334-6B-52
 R903V1-7C(L)
 GP1UD28YK
 GP1UM272RKVF
 GP1UM281QKVF

 TSOP36438TT
 TSOP75340TT
 TSOP98238
 TSOP98456
 TSOP34338SS1VF
 TSDP34138
 TSDP34338
 TSDP34338

 TSMP4138
 TSMP58000
 TSMP58138
 TSMP6000TT
 TSMP77000TR
 TSOP13236